Beginning Machine Learning in the Browser: Quick-Start Guide to Gait Analysis with JavaScript and Tensorflow.Js
暫譯: 瀏覽器中的機器學習入門:使用 JavaScript 和 Tensorflow.js 進行步態分析的快速入門指南
Suryadevara, Nagender Kumar
- 出版商: Apress
- 出版日期: 2021-04-02
- 售價: $1,600
- 貴賓價: 9.5 折 $1,520
- 語言: 英文
- 頁數: 185
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484268423
- ISBN-13: 9781484268421
-
相關分類:
JavaScript、DeepLearning、TensorFlow、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
相關主題
商品描述
Apply Artificial Intelligence techniques in the browser or on resource constrained computing devices. Machine learning (ML) can be an intimidating subject until you know the essentials and for what applications it works. This book takes advantage of the intricacies of the ML processes by using a simple, flexible and portable programming language such as JavaScript to work with more approachable, fundamental coding ideas.
Using JavaScript programming features along with standard libraries, you'll first learn to design and develop interactive graphics applications. Then move further into neural systems and human pose estimation strategies. For training and deploying your ML models in the browser, TensorFlow.js libraries will be emphasized.
After conquering the fundamentals, you'll dig into the wilderness of ML. Employ the ML and Processing (P5) libraries for Human Gait analysis. Building up Gait recognition with themes, you'll come to understand a variety of ML implementation issues. For example, you'll learn about the classification of normal and abnormal Gait patterns.
With Beginning Machine Learning in the Browser, you'll be on your way to becoming an experienced Machine Learning developer.
What You'll Learn
- Work with ML models, calculations, and information gathering
- Implement TensorFlow.js libraries for ML models
- Perform Human Gait Analysis using ML techniques in the browser
Who This Book Is For
Computer science students and research scholars, and novice programmers/web developers in the domain of Internet Technologies
商品描述(中文翻譯)
應用人工智慧技術於瀏覽器或資源受限的計算設備上。機器學習(Machine Learning, ML)可能是一個令人畏懼的主題,直到你了解其基本概念及其適用的應用範疇。本書利用機器學習過程中的複雜性,使用簡單、靈活且可攜帶的程式語言如 JavaScript,來處理更易於理解的基本編碼概念。
透過使用 JavaScript 的程式設計特性以及標準函式庫,你將首先學習設計和開發互動式圖形應用程式。接著進一步探討神經系統和人體姿勢估計策略。對於在瀏覽器中訓練和部署你的機器學習模型,將強調使用 TensorFlow.js 函式庫。
在掌握基本概念後,你將深入機器學習的廣闊領域。利用機器學習和 Processing (P5) 函式庫進行人體步態分析。透過主題建立步態識別,你將理解各種機器學習實作問題。例如,你將學習正常與異常步態模式的分類。
透過《Beginning Machine Learning in the Browser》,你將邁向成為一名經驗豐富的機器學習開發者。
你將學到的內容:
- 使用機器學習模型、計算和資訊收集
- 實作 TensorFlow.js 函式庫以用於機器學習模型
- 在瀏覽器中使用機器學習技術進行人體步態分析
本書適合對象:
計算機科學學生、研究學者,以及在網際網路技術領域的初學者程式設計師/網頁開發者。
作者簡介
Nagender Kumar Suryadevara received his Ph.D. from the School of Engineering and Advanced Technology, Massey University, New Zealand, in 2014. He has authored two books and over 45 publications in different international journals, conferences, and book chapters. His research interests lie in the domains of wireless sensor networks, Internet of Things technologies, and time-series data mining.
作者簡介(中文翻譯)
Nagender Kumar Suryadevara 於2014年獲得紐西蘭梅西大學工程與先進技術學院的博士學位。他已出版兩本書籍及超過45篇在不同國際期刊、會議和書籍章節中的論文。他的研究興趣包括無線感測器網路、物聯網技術以及時間序列資料挖掘。