Understand, Manage, and Prevent Algorithmic Bias: A Guide for Business Users and Data Scientists
暫譯: 理解、管理與預防演算法偏見:商業用戶與資料科學家的指南

Baer, Tobias

  • 出版商: Apress
  • 出版日期: 2019-06-08
  • 定價: $1,820
  • 售價: 8.0$1,456
  • 語言: 英文
  • 頁數: 240
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484248848
  • ISBN-13: 9781484248843
  • 相關分類: Algorithms-data-structures
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

The human mind is evolutionarily designed to take shortcuts in order to survive. We jump to conclusions because our brains want to keep us safe. A majority of our biases work in our favor, such as when we feel a car speeding in our direction is dangerous and we instantly move, or when we decide not take a bite of food that appears to have gone bad. However, inherent bias negatively affects work environments and the decision-making surrounding our communities. While the creation of algorithms and machine learning attempts to eliminate bias, they are, after all, created by human beings, and thus are susceptible to what we call algorithmic bias.

In Understand, Manage, and Prevent Algorithmic Bias, author Tobias Baer helps you understand where algorithmic bias comes from, how to manage it as a business user or regulator, and how data science can prevent bias from entering statistical algorithms. Baer expertly addresses some of the 100+ varieties of natural bias such as confirmation bias, stability bias, pattern-recognition bias, and many others. Algorithmic bias mirrors--and originates in--these human tendencies.

 

While most writings on algorithmic bias focus on the dangers, the core of this positive, fun book points toward a path where bias is kept at bay and even eliminated. You'll come away with managerial techniques to develop unbiased algorithms, the ability to detect bias more quickly, and knowledge to create unbiased data. Understand, Manage, and Prevent Algorithmic Bias is an innovative, timely, and important book that belongs on your shelf. Whether you are a seasoned business executive, a data scientist, or simply an enthusiast, now is a crucial time to be educated about the larger sociological impact of bias in the digital era.

 

What You'll Learn

 

  • Study the many sources of algorithmic bias, including cognitive biases in the real world, biased data, and statistical artifact
  • Understand the risks of algorithmic biases, how to detect them, and managerial techniques to prevent or manage them
  • Appreciate how machine learning both introduces new sources of algorithmic bias and can be a part of a solution
  • Be familiar with specific statistical techniques a data scientist can use to detect and overcome algorithmic bias

 

 

Who This Book is For

Business executives of companies using algorithms in daily operations; data scientists (from students to seasoned practitioners) developing algorithms; compliance officials concerned about algorithmic bias; politicians, journalists, and philosophers thinking about algorithmic bias in terms of its impact on society and possible regulatory responses; and consumers concerned about how they might be affected by algorithmic bias

商品描述(中文翻譯)

人類的思維在進化上設計成為了能夠採取捷徑以求生存。我們會迅速下結論,因為我們的大腦希望保護我們的安全。我們的偏見大多對我們有利,例如當我們感覺到一輛車朝我們快速駛來時會感到危險,並立即移動,或者當我們決定不吃看起來已經變壞的食物時。然而,固有的偏見對工作環境和我們社區的決策產生了負面影響。儘管算法和機器學習的創建旨在消除偏見,但它們畢竟是由人類創造的,因此容易受到我們所稱的算法偏見的影響。

理解、管理與防止算法偏見一書中,作者托比亞斯·貝爾(Tobias Baer)幫助你理解算法偏見的來源,如何作為商業用戶或監管者來管理它,以及數據科學如何防止偏見進入統計算法。貝爾專業地探討了100多種自然偏見的變體,例如確認偏見、穩定性偏見、模式識別偏見等。算法偏見反映並源於這些人類的傾向。

雖然大多數關於算法偏見的著作都集中於其危險性,但這本積極、有趣的書的核心指向了一條可以控制甚至消除偏見的道路。你將學到管理技術,以開發無偏見的算法,更快地檢測偏見的能力,以及創建無偏見數據的知識。理解、管理與防止算法偏見是一本創新、及時且重要的書籍,值得你擁有。無論你是資深商業高管、數據科學家,還是單純的愛好者,現在都是了解數位時代偏見對社會更大社會學影響的關鍵時刻。

你將學到什麼


  • 研究算法偏見的多種來源,包括現實世界中的認知偏見、偏見數據和統計工件

  • 了解算法偏見的風險、如何檢測它們,以及防止或管理它們的管理技術

  • 欣賞機器學習如何引入新的算法偏見來源,並且可以成為解決方案的一部分

  • 熟悉數據科學家可以用來檢測和克服算法偏見的特定統計技術

本書適合誰

本書適合在日常運營中使用算法的公司商業高管;開發算法的數據科學家(從學生到資深從業者);關心算法偏見的合規官員;思考算法偏見對社會影響及可能的監管回應的政治家、記者和哲學家;以及關心自己可能受到算法偏見影響的消費者。

作者簡介

Tobias Baer is a data scientist, psychologist, and top management consultant with over 20 years of experience in risk analytics. Until June 2018, he was Master Expert and Partner at McKinsey & Co., Inc., where he built McKinsey's Risk Advanced Analytics Center of Competence in India in 2004, led the Credit Risk Advanced Analytics Service Line globally, and served clients in over 50 countries on topics such as the development of analytical decision models for credit underwriting, insurance pricing, and tax enforcement, as well as debiasing decisions. Tobias has been pursuing a research agenda around analytics and decision making both at McKinsey (e.g., on debiasing judgmental decisions and on leveraging machine learning to develop highly transparent predictive models) and at University of Cambridge, UK (e.g., the effect of mental fatigue on decision bias).

 

Tobias holds a PhD in finance from University of Frankfurt, an MPhil in psychology from University of Cambridge, an MA in economics from UWM, and has done undergraduate studies in business administration and law at University of Giessen. He started publishing as a teenager, writing about programming tricks for the Commodore C64 home computer in a German software magazine, and now blogs regularly on his LinkedIn page.

作者簡介(中文翻譯)

Tobias Baer 是一位數據科學家、心理學家及頂尖管理顧問,擁有超過 20 年的風險分析經驗。在 2018 年 6 月之前,他是麥肯錫公司(McKinsey & Co., Inc.)的首席專家及合夥人,於 2004 年在印度建立了麥肯錫的風險高級分析能力中心,並全球領導信用風險高級分析服務線,為超過 50 個國家的客戶提供服務,涵蓋主題包括信用承保、保險定價及稅務執行的分析決策模型開發,以及去偏見決策。Tobias 一直在麥肯錫(例如,針對去偏見判斷決策及利用機器學習開發高度透明的預測模型)和英國劍橋大學(例如,心理疲勞對決策偏見的影響)進行有關分析和決策的研究。

Tobias 擁有法蘭克福大學的金融博士學位、劍橋大學的心理學碩士學位、威斯康辛大學密爾瓦基分校的經濟學碩士學位,並在吉森大學完成了商業管理和法律的本科學習。他在青少年時期開始發表文章,為德國的一本軟體雜誌撰寫有關 Commodore C64 家用電腦的程式設計技巧,現在則定期在他的 LinkedIn 頁面上撰寫部落格。

最後瀏覽商品 (20)