Responsible Data Science
暫譯: 負責任的數據科學

Bruce, Peter C., Fleming, Grant

  • 出版商: Wiley
  • 出版日期: 2021-05-11
  • 定價: $1,360
  • 售價: 9.5$1,292
  • 語言: 英文
  • 頁數: 304
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1119741750
  • ISBN-13: 9781119741756
  • 相關分類: Data Science
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

相關主題

商品描述

Explore the most serious prevalent ethical issues in data science with this insightful new resource

The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of "Black box" algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair.

Responsible Data Science delivers a comprehensive, practical treatment of how to implement data science solutions in an even-handed and ethical manner that minimizes the risk of undue harm to vulnerable members of society. Both data science practitioners and managers of analytics teams will learn how to:

    Improve model transparency, even for black box models Diagnose bias and unfairness within models using multiple metrics Audit projects to ensure fairness and minimize the possibility of unintended harm

Perfect for data science practitioners, Responsible Data Science will also earn a spot on the bookshelves of technically inclined managers, software developers, and statisticians.

商品描述(中文翻譯)

探索數據科學中最嚴重的普遍倫理問題,這本具洞察力的新資源將為您提供幫助。

數據科學的日益普及導致了許多廣為人知的偏見、不公正和歧視案例。難以理解和解釋的「黑箱」算法的廣泛應用,即使對於其開發者來說也是如此,是這些意想不到的傷害的主要來源,使得操控大型數據集的現代技術和方法看起來陰險,甚至危險。當這些算法落入專制政府之手時,便使得政治異議受到壓制,少數群體遭受迫害。為了防止這些傷害,全球的數據科學家必須了解他們所構建和部署的算法可能如何傷害某些群體或不公平。

《負責任的數據科學》提供了一個全面且實用的處理方式,說明如何以公正和倫理的方式實施數據科學解決方案,從而最小化對社會中脆弱成員的過度傷害風險。數據科學從業者和分析團隊的管理者將學會如何:

- 改善模型透明度,即使是對於黑箱模型
- 使用多種指標診斷模型中的偏見和不公平
- 審計項目以確保公平並最小化意外傷害的可能性

《負責任的數據科學》非常適合數據科學從業者,也將成為技術導向的管理者、軟體開發者和統計學家的書架上的一本好書。

作者簡介

Peter Bruce founded the Institute for Statistics Education at Statistics.com in 2002. The Institute specializes in introductory and graduate level online education in statistics, optimization, risk modeling, predictive modeling, data mining, and other subjects in quantitative analytics.

Grant Fleming is a Data Scientist at Elder Research Inc. (ERI). During his time at ERI, he has worked with clients in both government and the private sector on statistical testing, data asset creation, predictive analytics, and latent variable modeling. He has given multiple talks on machine learning interpretability and fairness within ERI as well as to outside groups. Internally to ERI, Grant is working on developing software packages for creating reproducible and interpretable black box models.

作者簡介(中文翻譯)

彼得·布魯斯(Peter Bruce)於2002年在Statistics.com創立了統計教育研究所。該研究所專注於統計學、優化、風險建模、預測建模、資料探勘及其他定量分析主題的入門和研究生級別的線上教育。

格蘭特·弗萊明(Grant Fleming)是Elder Research Inc.(ERI)的數據科學家。在ERI工作期間,他與政府和私營部門的客戶合作,進行統計測試、數據資產創建、預測分析和潛在變量建模。他在ERI內部及外部團體中多次發表有關機器學習可解釋性和公平性的演講。在ERI內部,格蘭特正在開發用於創建可重現和可解釋的黑箱模型的軟體包。