Practical Java Machine Learning: Projects with Google Cloud Platform and Amazon Web Services
暫譯: 實用 Java 機器學習:使用 Google Cloud Platform 和 Amazon Web Services 的專案
Mark Wickham
- 出版商: Apress
- 出版日期: 2018-10-24
- 售價: $1,890
- 貴賓價: 9.5 折 $1,796
- 語言: 英文
- 頁數: 416
- 裝訂: Paperback
- ISBN: 1484239504
- ISBN-13: 9781484239506
-
相關分類:
Amazon Web Services、Google Cloud、Java 程式語言、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$580$458 -
$450$356 -
$480$379 -
$1,750$1,663 -
$690Spring Boot 2 Fundamentals: Learn how you can quickly build and deploy production-ready microservices within the Java and JRE ecosystem
-
$1,840$1,748
商品描述
Build machine learning (ML) solutions for Java development. This book shows you that when designing ML apps, data is the key driver and must be considered throughout all phases of the project life cycle. Practical Java Machine Learning helps you understand the importance of data and how to organize it for use within your ML project. You will be introduced to tools which can help you identify and manage your data including JSON, visualization, NoSQL databases, and cloud platforms including Google Cloud Platform and Amazon Web Services.
Practical Java Machine Learning includes multiple projects, with particular focus on the Android mobile platform and features such as sensors, camera, and connectivity, each of which produce data that can power unique machine learning solutions. You will learn to build a variety of applications that demonstrate the capabilities of the Google Cloud Platform machine learning API, including data visualization for Java; document classification using the Weka ML environment; audio file classification for Android using ML with spectrogram voice data; and machine learning using device sensor data.
After reading this book, you will come away with case study examples and projects that you can take away as templates for re-use and exploration for your own machine learning programming projects with Java.
What You Will Learn
- Identify, organize, and architect the data required for ML projects
- Deploy ML solutions in conjunction with cloud providers such as Google and Amazon
- Determine which algorithm is the most appropriate for a specific ML problem
- Implement Java ML solutions on Android mobile devices
- Create Java ML solutions to work with sensor data
- Build Java streaming based solutions
Who This Book Is For
Experienced Java developers who have not implemented machine learning techniques before.
商品描述(中文翻譯)
建立 Java 開發的機器學習 (ML) 解決方案。本書告訴您,在設計 ML 應用程式時,數據是關鍵驅動因素,必須在專案生命週期的所有階段中考慮。實用 Java 機器學習 幫助您理解數據的重要性以及如何組織數據以便在您的 ML 專案中使用。您將接觸到一些工具,這些工具可以幫助您識別和管理數據,包括 JSON、可視化、NoSQL 數據庫,以及雲平台,如 Google Cloud Platform 和 Amazon Web Services。
實用 Java 機器學習 包含多個專案,特別關注 Android 行動平台及其功能,如感測器、相機和連接性,每個功能都產生可以驅動獨特機器學習解決方案的數據。您將學習構建各種應用程式,展示 Google Cloud Platform 機器學習 API 的能力,包括 Java 的數據可視化;使用 Weka ML 環境進行文檔分類;使用 ML 和聲譜語音數據對 Android 的音頻文件進行分類;以及使用設備感測器數據進行機器學習。
閱讀本書後,您將獲得案例研究示例和專案,這些可以作為模板供您在自己的 Java 機器學習程式設計專案中重用和探索。
您將學到什麼
- 識別、組織和架構 ML 專案所需的數據
- 與雲服務提供商(如 Google 和 Amazon)一起部署 ML 解決方案
- 確定哪種算法最適合特定的 ML 問題
- 在 Android 行動設備上實現 Java ML 解決方案
- 創建與感測器數據協作的 Java ML 解決方案
- 構建基於 Java 的串流解決方案
本書適合誰
有經驗的 Java 開發人員,但之前未實施過機器學習技術。