MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)
暫譯: MATLAB 機器學習食譜:問題解決方法,第2版 (平裝本)

Michael Paluszek, Stephanie Thomas

  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-1
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-2
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-3
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-4
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-5
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-6
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-7
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-8
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-9
  • MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-10
MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2/e (Paperback)-preview-1

買這商品的人也買了...

相關主題

商品描述

Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem.
 
All code in MATLAB Machine Learning Recipes:  A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more.
 
What you'll learn:
  • How to write code for machine learning, adaptive control and estimation using MATLAB
  • How these three areas complement each other
  • How these three areas are needed for robust machine learning applications
  • How to use MATLAB graphics and visualization tools for machine learning
  • How to code real world examples in MATLAB for major applications of machine learning in big data
 
Who is this book for:

 

The primary audiences are engineers, data scientists and students wanting a comprehensive and code cookbook rich in examples on machine learning using MATLAB.
 

商品描述(中文翻譯)

利用 MATLAB 的強大功能來解決各種機器學習挑戰。本書提供了一系列對機器學習至關重要的技術範例。每個範例都解決了一個現實世界中的問題。

本書《MATLAB 機器學習食譜:問題解決方法》中所有的程式碼都是可執行的。程式碼所使用的工具箱提供了一整套實現機器學習各個方面所需的功能。作者 **Michael Paluszek** 和 **Stephanie Thomas** 展示了這些技術如何使讀者能夠構建複雜的應用程序,以解決模式識別、自動駕駛、專家系統等問題,還有更多。

**您將學到的內容:**

- 如何使用 MATLAB 編寫機器學習、自適應控制和估計的程式碼
- 這三個領域如何相互補充
- 這三個領域對於穩健的機器學習應用程序有多麼重要
- 如何使用 MATLAB 的圖形和可視化工具進行機器學習
- 如何在 MATLAB 中編寫現實世界的範例,以應用於大數據中的主要機器學習應用

**本書適合誰:**

主要讀者是工程師、數據科學家和希望獲得全面且富有範例的機器學習程式碼食譜的學生,使用 MATLAB 進行學習。