Neural Networks in Unity: C# Programming for Windows 10
暫譯: Unity中的神經網絡:Windows 10的C#程式設計
Abhishek Nandy
- 出版商: Apress
- 出版日期: 2018-07-15
- 售價: $1,510
- 貴賓價: 9.5 折 $1,435
- 語言: 英文
- 頁數: 172
- 裝訂: Paperback
- ISBN: 1484236726
- ISBN-13: 9781484236727
-
相關分類:
C#、遊戲引擎 Game-engine
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,860$1,767 -
$2,650$2,518 -
$750$638 -
$480$379 -
$454ROS 機器人編程實踐 (Programming Robots with ROS: A Practical Introduction to the Robot Operating Syste)
-
$990Unity 2017 Game AI Programming, Third Edition
-
$403游戲 UI 設計 : 修煉之道
-
$1,960TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning
-
$650$585 -
$500$390 -
$680$578 -
$520$411
相關主題
商品描述
Learn the core concepts of neural networks and discover the different types of neural network, using Unity as your platform. In this book you will start by exploring back propagation and unsupervised neural networks with Unity and C#. You’ll then move onto activation functions, such as sigmoid functions, step functions, and so on. The author also explains all the variations of neural networks such as feed forward, recurrent, and radial.
Once you’ve gained the basics, you’ll start programming Unity with C#. In this section the author discusses constructing neural networks for unsupervised learning, representing a neural network in terms of data structures in C#, and replicating a neural network in Unity as a simulation. Finally, you’ll define back propagation with Unity C#, before compiling your project.
What You'll Learn
- Discover the concepts behind neural networks
- Work with Unity and C#
- See the difference between fully connected and convolutional neural networks
- Master neural network processing for Windows 10 UWP
Who This Book Is For
Gaming professionals, machine learning and deep learning enthusiasts.
商品描述(中文翻譯)
學習神經網絡的核心概念,並探索不同類型的神經網絡,以 Unity 作為您的平台。在本書中,您將首先探索反向傳播(back propagation)和無監督神經網絡,使用 Unity 和 C#。接著,您將進一步了解激活函數,例如 sigmoid 函數、階梯函數等。作者還解釋了神經網絡的所有變體,如前饋(feed forward)、遞迴(recurrent)和徑向(radial)神經網絡。
一旦您掌握了基礎知識,您將開始使用 C# 編程 Unity。在這一部分,作者討論了構建無監督學習的神經網絡,如何在 C# 中以數據結構表示神經網絡,以及如何在 Unity 中將神經網絡複製為模擬。最後,您將定義使用 Unity C# 的反向傳播,然後編譯您的項目。
您將學到的內容:
- 探索神經網絡背後的概念
- 使用 Unity 和 C#
- 了解全連接神經網絡與卷積神經網絡之間的區別
- 精通 Windows 10 UWP 的神經網絡處理
本書適合對象:
遊戲專業人士、機器學習和深度學習愛好者。