Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks
暫譯: C++ 與 CUDA C 中的深度信念網絡:第一卷:限制玻爾茲曼機與監督式前饋網絡

Timothy Masters

  • 出版商: Apress
  • 出版日期: 2018-04-24
  • 售價: $1,520
  • 貴賓價: 9.5$1,444
  • 語言: 英文
  • 頁數: 219
  • 裝訂: Paperback
  • ISBN: 1484235908
  • ISBN-13: 9781484235904
  • 相關分類: C++ 程式語言CUDA
  • 海外代購書籍(需單獨結帳)

商品描述

Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. 
 
The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. 
 
All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines. 
 
 
What You Will Learn
  • Employ deep learning using C++ and CUDA C
  • Work with supervised feedforward networks 
  • Implement restricted Boltzmann machines 
  • Use generative samplings
  • Discover why these are important
 
Who This Book Is For
 
Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.
 

商品描述(中文翻譯)

發現最常見的深度信念網路的基本構建塊。本書在每一步都提供直觀的動機、與主題相關的最重要方程式的摘要,並以高度註解的程式碼作結,這些程式碼適用於現代 CPU 的多執行緒計算以及具備 CUDA 能力的顯示卡的計算機上的大規模並行處理。

這是關於 C++ 和 CUDA C 深度學習及信念網路系列中的第一本書,Deep Belief Nets in C++ and CUDA C: Volume 1 向您展示這些優雅模型的結構與人類大腦的結構更為接近,而非傳統神經網路;它們具有能夠從更簡單的原始概念中學習抽象概念的思考過程。因此,您將看到一個典型的深度信念網路可以通過優化數百萬個參數來學習識別複雜的模式,但這個模型仍然能夠抵抗過擬合。

本書中介紹的所有例程和算法都可以在程式碼下載中獲得,該下載還包含一些相關例程的庫。

您將學到什麼


  • 使用 C++ 和 CUDA C 進行深度學習

  • 使用監督式前饋網路

  • 實現限制玻爾茲曼機

  • 使用生成取樣

  • 了解這些為何重要

本書適合誰閱讀

具備至少基本神經網路知識和一些編程經驗的人,雖然建議具備一些 C++ 和 CUDA C 的知識。

最後瀏覽商品 (20)