Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R
暫譯: 專業機器學習演算法:Python 和 R 實作演算法的實務指南

V Kishore Ayyadevara

買這商品的人也買了...

商品描述

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R.
 
You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers.
 
You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. 
 
What You Will Learn
  • Get an in-depth understanding of all the major machine learning and deep learning algorithms 
  • Fully appreciate the pitfalls to avoid while building models
  • Implement machine learning algorithms in the cloud 
  • Follow a hands-on approach through case studies for each algorithm
  • Gain the tricks of ensemble learning to build more accurate models
  • Discover the basics of programming in R/Python and the Keras framework for deep learning
Who This Book Is For
 
Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.
 

 

商品描述(中文翻譯)

橋接高層次理解演算法運作方式與了解調整模型所需的細節之間的差距。本書將使您在開發所有主要機器學習模型時獲得信心和技能。在《Pro Machine Learning Algorithms》中,您將首先在 Excel 中開發演算法,以便實際了解模型中可以調整的所有參數,然後再在 Python/R 中實現這些模型。

您將涵蓋所有主要演算法:監督式學習和非監督式學習,包括線性/邏輯回歸;k-means 聚類;主成分分析 (PCA);推薦系統;決策樹;隨機森林;梯度提升機 (GBM);以及神經網絡。您還將接觸到最新的深度學習技術,包括卷積神經網絡 (CNN)、遞歸神經網絡 (RNN) 和 word2vec 用於文本挖掘。您將學習不僅是演算法,還有特徵工程的概念,以最大化模型的性能。您將看到理論與案例研究,例如情感分類、詐騙檢測、推薦系統和圖像識別,讓您在業界使用的絕大多數機器學習演算法中獲得理論與實踐的最佳結合。除了學習演算法,您還將接觸到在所有主要雲服務提供商上運行機器學習模型。

您預期對統計學/軟體程式設計有基本了解,並且在本書結束時,您應該能夠自信地進行機器學習專案。

您將學到的內容:
- 深入了解所有主要的機器學習和深度學習演算法
- 完全理解在建立模型時應避免的陷阱
- 在雲端實現機器學習演算法
- 通過每個演算法的案例研究採取實作方法
- 獲得集成學習的技巧,以建立更準確的模型
- 探索 R/Python 程式設計的基本知識以及 Keras 框架的深度學習

本書適合對象:
希望轉型為數據科學角色的商業分析師/IT 專業人員。希望鞏固機器學習知識的數據科學家。