Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R
暫譯: 使用 R 的深度學習入門:逐步指南學習和實作深度學習模型
Taweh Beysolow II
- 出版商: Apress
- 出版日期: 2017-07-20
- 售價: $2,600
- 貴賓價: 9.5 折 $2,470
- 語言: 英文
- 頁數: 227
- 裝訂: Paperback
- ISBN: 1484227336
- ISBN-13: 9781484227336
-
相關分類:
R 語言、DeepLearning
-
相關翻譯:
深度學習:R語言實踐指南 (Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R) (簡中版)
商品描述
Understand deep learning, the nuances of its different models, and where these models can be applied.
The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools.What You'll Learn- Understand the intuition and mathematics that power deep learning models
- Utilize various algorithms using the R programming language and its packages
- Use best practices for experimental design and variable selection
- Practice the methodology to approach and effectively solve problems as a data scientist
- Evaluate the effectiveness of algorithmic solutions and enhance their predictive power
Who This Book Is For
Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful.
商品描述(中文翻譯)
了解深度學習、不同模型的細微差別,以及這些模型可以應用的領域。
數據的豐富性和對優質產品/服務的需求推動了先進計算機科學技術的發展,其中包括圖像和語音識別。《使用 R 的深度學習入門》通過機器學習和深度學習的基本原理,提供了對執行這些任務的模型的理論和實踐理解。這本逐步指南將幫助您理解這些學科,以便您能夠在各種情境中應用這些方法論。所有示例均使用 R 語言進行教學,讓學生和專業人士能夠使用開源工具實現這些技術。
您將學到的內容:
- 理解驅動深度學習模型的直覺和數學
- 使用 R 程式語言及其套件利用各種算法
- 使用最佳實踐進行實驗設計和變數選擇
- 實踐方法論,以數據科學家的身份有效解決問題
- 評估算法解決方案的有效性並增強其預測能力
本書適合對象:
熟悉使用 R 編程的學生、研究人員和數據科學家。本書也適合希望學習如何在最有用的應用中適當部署這些算法的人士。