Big Data SMACK: A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka
Raul Estrada, Isaac Ruiz
- 出版商: Apress
- 出版日期: 2016-09-29
- 售價: $1,400
- 貴賓價: 9.5 折 $1,330
- 語言: 英文
- 頁數: 264
- 裝訂: Paperback
- ISBN: 1484221745
- ISBN-13: 9781484221747
-
相關分類:
Java 相關技術、Message Queue、NoSQL、Spark、大數據 Big-data
立即出貨 (庫存=1)
買這商品的人也買了...
-
$301深入理解 Scala
-
$990Cassandra: The Definitive Guide 2/e
-
$281用 Mesos 框架構建分佈式應用 (Building applications on Mesos)
-
$500$395 -
$650$507 -
$580$493 -
$408$388 -
$620$484 -
$630$498
相關主題
商品描述
This book is about how to integrate full-stack open source big data architecture and how to choose the correct technology―Scala/Spark, Mesos, Akka, Cassandra, and Kafka―in every layer. Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large datasets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses.
Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer:
- The language: Scala
- The engine: Spark (SQL, MLib, Streaming, GraphX)
- The container: Mesos, Docker
- The view: Akka
- The storage: Cassandra
- The message broker: Kafka
What you’ll learn
- How to make big data architecture without using complex Greek letter architectures.
- How to build a cheap but effective cluster infrastructure.
- How to make queries, reports, and graphs that business demands.
- How to manage and exploit unstructured and No-SQL data sources.
- How use tools to monitor the performance of your architecture.
- How to integrate all technologies and decide which replace and which reinforce.
Who This Book Is For
This book is for developers, data architects, and data scientists looking for how to integrate the most successful big data open stack architecture and how to choose the correct technology in every layer.商品描述(中文翻譯)
這本書介紹了如何整合全棧開源大數據架構,以及如何在每一層選擇正確的技術 - Scala/Spark、Mesos、Akka、Cassandra和Kafka。大數據架構已成為許多企業的需求。然而,到目前為止,重點主要集中在及時收集、聚合和處理大型數據集。現在,許多組織需要多種範式來進行高效的分析。
《Big Data SMACK》解釋了每個全棧技術,更重要的是如何最佳地整合它們。它詳細介紹了這些技術的實際優勢,並在每種情況下提供了真實世界的示例。本書關注架構解決的問題和場景,以及每種技術提供的解決方案。它涵蓋了大數據架構的六個主要概念,以及如何整合、替換和加強每一層:
- 語言:Scala
- 引擎:Spark(SQL、MLib、Streaming、GraphX)
- 容器:Mesos、Docker
- 視圖:Akka
- 存儲:Cassandra
- 消息代理:Kafka
你將學到什麼:
- 如何在不使用複雜的希臘字母架構的情況下構建大數據架構。
- 如何構建廉價但有效的集群基礎設施。
- 如何製作業務需求的查詢、報告和圖表。
- 如何管理和利用非結構化和No-SQL數據源。
- 如何使用工具監控架構的性能。
- 如何整合所有技術並決定替換和加強哪些。
這本書適合開發人員、數據架構師和數據科學家,他們想要了解如何整合最成功的大數據開放堆棧架構,以及如何在每一層選擇正確的技術。