Multithreading for Visual Effects (Hardcover)

Martin Watt, James Reinders

  • 出版商: A K Peters
  • 出版日期: 2014-08-05
  • 售價: $2,980
  • 貴賓價: 9.5$2,831
  • 語言: 英文
  • 頁數: 255
  • 裝訂: Hardcover
  • ISBN: 1482243563
  • ISBN-13: 9781482243567
  • 相關分類: Visual C++Computer Vision
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Tackle the Challenges of Parallel Programming in the Visual Effects Industry

In Multithreading for Visual Effects, developers from DreamWorks Animation, Pixar, Side Effects, Intel, and AMD share their successes and failures in the messy real-world application area of production software. They provide practical advice on multithreading techniques and visual effects used in popular visual effects libraries (such as Bullet, OpenVDB, and OpenSubdiv), one of the industry’s leading visual effects packages (Houdini), and proprietary animation systems. This information is valuable not just to those in the visual effects arena, but also to developers of high performance software looking to increase performance of their code.

Diverse Solutions to Solve Performance Problems

After an introductory chapter, each subsequent chapter presents a case study that illustrates how the authors used multithreading techniques to achieve better performance. The authors discuss the problems that occurred and explain how they solved them. The case studies encompass solutions for shaving milliseconds, solutions for optimizing longer running tasks, multithreading techniques for modern CPU architectures, and massive parallelism using GPUs. Some of the case studies include open source projects so you can try out these techniques for yourself and see how well they work.

商品描述(中文翻譯)

在《多線程處理視覺效果行業的挑戰》一書中,來自夢工廠動畫、皮克斯、Side Effects、英特爾和AMD的開發人員分享了他們在製作軟件的混亂現實應用領域中的成功和失敗。他們提供了關於多線程技術和在流行的視覺效果庫(如Bullet、OpenVDB和OpenSubdiv)以及行業領先的視覺效果軟件包(Houdini)和專有動畫系統中使用的視覺效果的實用建議。這些信息不僅對視覺效果領域的人員有價值,對於希望提高代碼性能的高性能軟件開發人員也很有幫助。

在介紹性章節之後,每個後續章節都提供了一個案例研究,展示了作者如何使用多線程技術來實現更好的性能。作者討論了出現的問題並解釋了他們是如何解決的。這些案例研究涵蓋了減少毫秒數的解決方案,優化長時間運行任務的解決方案,針對現代CPU架構的多線程技術,以及使用GPU的大規模並行計算。其中一些案例研究包括開源項目,因此您可以自己嘗試這些技術,看看它們的效果如何。