Big Data Analytics: A Practical Guide for Managers (Hardcover)
Kim H. Pries, Robert Dunnigan
- 出版商: Auerbach Publication
- 出版日期: 2015-02-05
- 售價: $2,100
- 貴賓價: 9.5 折 $1,995
- 語言: 英文
- 頁數: 576
- 裝訂: Hardcover
- ISBN: 1482234513
- ISBN-13: 9781482234510
-
相關分類:
大數據 Big-data、Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
-
$620$489 -
$690$587 -
$550$468 -
$780$616 -
$480$379 -
$780$663 -
$400$380 -
$580$383 -
$980$774 -
$620$558 -
$680$578 -
$560$437 -
$350$231 -
$350$231 -
$580$452 -
$560$370 -
$620$527 -
$550$468 -
$520$411 -
$620$484 -
$490$323 -
$580$493 -
$580$522 -
$450$297 -
$350$231
相關主題
商品描述
With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.
Comparing and contrasting the different types of analysis commonly conducted with big data, this accessible reference presents clear-cut explanations of the general workings of big data tools. Instead of spending time on HOW to install specific packages, it focuses on the reasons WHY readers would install a given package.
The book provides authoritative guidance on a range of tools, including open source and proprietary systems. It details the strengths and weaknesses of incorporating big data analysis into decision-making and explains how to leverage the strengths while mitigating the weaknesses.
- Describes the benefits of distributed computing in simple terms
- Includes substantial vendor/tool material, especially for open source decisions
- Covers prominent software packages, including Hadoop and Oracle Endeca
- Examines GIS and machine learning applications
- Considers privacy and surveillance issues
The book further explores basic statistical concepts that, when misapplied, can be the source of errors. Time and again, big data is treated as an oracle that discovers results nobody would have imagined. While big data can serve this valuable function, all too often these results are incorrect, yet are still reported unquestioningly. The probability of having erroneous results increases as a larger number of variables are compared unless preventative measures are taken.
The approach taken by the authors is to explain these concepts so managers can ask better questions of their analysts and vendors as to the appropriateness of the methods used to arrive at a conclusion. Because the world of science and medicine has been grappling with similar issues in the publication of studies, the authors draw on their efforts and apply them to big data.
商品描述(中文翻譯)
這本書提供了管理者和決策者在大數據購買計劃方面做出更明智決策的工具。《大數據分析:管理者的實用指南》不僅提供了常見工具的描述,還調查了供應大數據市場的各種產品和供應商。
通過比較和對比常用的大數據分析類型,這本易於理解的參考書清晰解釋了大數據工具的一般運作原理。它不僅關注如何安裝特定軟件包,更重要的是解釋讀者為什麼要安裝某個軟件包。
這本書提供了對一系列工具的權威指導,包括開源和專有系統。它詳細介紹了將大數據分析納入決策過程中的優點和缺點,並解釋了如何利用優點同時減輕缺點。
書中還探討了基本統計概念,這些概念在誤用時可能成為錯誤的來源。大數據往往被視為一個能發現無人想像的結果的神諭。儘管大數據可以發揮這一寶貴功能,但這些結果往往是不正確的,卻仍然被毫無疑問地報告。除非採取預防措施,否則隨著比較的變量數量增加,出現錯誤結果的概率也會增加。
作者的方法是解釋這些概念,以便管理者能夠向分析師和供應商提出更好的問題,詢問所使用的方法是否適當。由於科學和醫學界在研究發表方面一直在努力應對類似問題,作者們借鑒了這些努力並將其應用於大數據領域。