Big Data Analytics: A Practical Guide for Managers (Hardcover)
暫譯: 大數據分析:管理者實用指南 (精裝版)

Kim H. Pries, Robert Dunnigan

  • 出版商: Auerbach Publication
  • 出版日期: 2015-02-05
  • 售價: $2,100
  • 貴賓價: 9.5$1,995
  • 語言: 英文
  • 頁數: 576
  • 裝訂: Hardcover
  • ISBN: 1482234513
  • ISBN-13: 9781482234510
  • 相關分類: 大數據 Big-dataData Science
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.

Comparing and contrasting the different types of analysis commonly conducted with big data, this accessible reference presents clear-cut explanations of the general workings of big data tools. Instead of spending time on HOW to install specific packages, it focuses on the reasons WHY readers would install a given package.

The book provides authoritative guidance on a range of tools, including open source and proprietary systems. It details the strengths and weaknesses of incorporating big data analysis into decision-making and explains how to leverage the strengths while mitigating the weaknesses.

  • Describes the benefits of distributed computing in simple terms
  • Includes substantial vendor/tool material, especially for open source decisions
  • Covers prominent software packages, including Hadoop and Oracle Endeca
  • Examines GIS and machine learning applications
  • Considers privacy and surveillance issues

The book further explores basic statistical concepts that, when misapplied, can be the source of errors. Time and again, big data is treated as an oracle that discovers results nobody would have imagined. While big data can serve this valuable function, all too often these results are incorrect, yet are still reported unquestioningly. The probability of having erroneous results increases as a larger number of variables are compared unless preventative measures are taken.

The approach taken by the authors is to explain these concepts so managers can ask better questions of their analysts and vendors as to the appropriateness of the methods used to arrive at a conclusion. Because the world of science and medicine has been grappling with similar issues in the publication of studies, the authors draw on their efforts and apply them to big data.

商品描述(中文翻譯)

這本書為管理者和決策者提供了工具,以便在大數據購買計畫中做出更明智的決策。《大數據分析:管理者的實用指南》不僅提供了常見工具的描述,還調查了供應大數據市場的各種產品和供應商。

本書比較和對比了常見的大數據分析類型,並以易於理解的方式呈現了大數據工具的一般運作原理。它不會花時間在如何安裝特定套件上,而是專注於讀者為何要安裝某個套件的原因。

本書提供了關於各種工具的權威指導,包括開源和專有系統。它詳細說明了將大數據分析納入決策過程的優勢和劣勢,並解釋了如何利用優勢同時減輕劣勢。

- 用簡單的術語描述分散式計算的好處
- 包含大量供應商/工具的資料,特別是針對開源決策
- 涵蓋了重要的軟體套件,包括Hadoop和Oracle Endeca
- 檢視GIS和機器學習應用
- 考慮隱私和監控問題

本書進一步探討了基本統計概念,這些概念在錯誤應用時可能成為錯誤的來源。大數據經常被視為一種能發現人們無法想像的結果的神諭。雖然大數據可以發揮這一有價值的功能,但這些結果往往是錯誤的,卻仍然不加質疑地被報導。隨著比較的變數數量增加,出現錯誤結果的概率也會增加,除非採取預防措施。

作者的做法是解釋這些概念,以便管理者能夠向分析師和供應商提出更好的問題,詢問用於得出結論的方法是否合適。由於科學和醫學界在研究發表中面臨類似問題,作者借鑒了他們的努力並將其應用於大數據。