Data Clustering: Algorithms and Applications (Hardcover)
暫譯: 資料聚類:演算法與應用(精裝版)
Charu C. Aggarwal, Chandan K. Reddy
- 出版商: CRC
- 出版日期: 2013-08-21
- 售價: $3,650
- 貴賓價: 9.5 折 $3,468
- 語言: 英文
- 頁數: 652
- 裝訂: Hardcover
- ISBN: 1466558210
- ISBN-13: 9781466558212
-
相關分類:
Algorithms-data-structures
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,650$1,568 -
$860$817 -
$650$553 -
$580$452 -
$400$380 -
$360$281 -
$1,782Data Science for Business: What you need to know about data mining and data-analytic thinking (Paperback)
-
$940$700 -
$320$250 -
$300$270 -
$680$578 -
$380$342 -
$750$735 -
$1,078Design With Operational Amplifiers And Analog Integrated Circuits, 4/e (IE-Paperback)
-
$360$252 -
$260$234 -
$650$618 -
$260$234 -
$80$76 -
$260$234 -
$550$435 -
$520$411 -
$480$408 -
$360$306 -
$1,600$1,600
相關主題
商品描述
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains.
The book focuses on three primary aspects of data clustering:
- Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization
- Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data
- Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation
In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.
商品描述(中文翻譯)
研究聚類問題的文獻往往在模式識別、資料庫、資料探勘和機器學習社群中呈現出碎片化的狀態。為了以統一的方式解決這個問題,資料聚類:演算法與應用 提供了聚類領域的完整覆蓋,從基本方法到更精細和複雜的資料聚類方法。書中特別關注圖形、社交網絡及其他領域的最新議題。
本書專注於資料聚類的三個主要方面:
- 方法,描述常用於聚類的關鍵技術,如特徵選擇、凝聚式聚類、劃分式聚類、基於密度的聚類、機率聚類、基於網格的聚類、光譜聚類和非負矩陣分解
- 領域,涵蓋用於不同資料領域的方法,如類別資料、文本資料、多媒體資料、圖形資料、生物資料、串流資料、不確定資料、時間序列聚類、高維聚類和大數據
- 變化與見解,討論聚類過程中的重要變化,如半監督聚類、互動式聚類、多視角聚類、聚類集成和聚類驗證
在本書中,來自世界各地的頂尖研究人員探討了各種應用領域中聚類問題的特徵。他們還解釋了如何從聚類過程中獲取詳細見解,包括如何通過監督、人為干預或自動生成替代聚類來驗證基礎聚類的質量。