Symmetric Discontinuous Galerkin Methods for 1-D Waves: Fourier Analysis, Propagation, Observability and Applications (SpringerBriefs in Mathematics)
暫譯: 對稱不連續Galerkin方法於一維波動:傅立葉分析、傳播、可觀測性及應用(數學簡報系列)
Aurora Marica
- 出版商: Springer
- 出版日期: 2014-03-11
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 120
- 裝訂: Paperback
- ISBN: 1461458102
- ISBN-13: 9781461458104
海外代購書籍(需單獨結帳)
商品描述
This work describes the propagation properties of the so-called symmetric interior penalty discontinuous Galerkin (SIPG) approximations of the 1-d wave equation. This is done by means of linear approximations on uniform meshes. First, a careful Fourier analysis is constructed, highlighting the coexistence of two Fourier spectral branches or spectral diagrams (physical and spurious) related to the two components of the numerical solution (averages and jumps). Efficient filtering mechanisms are also developed by means of techniques previously proved to be appropriate for classical schemes like finite differences or P1-classical finite elements. In particular, the work presents a proof that the uniform observability property is recovered uniformly by considering initial data with null jumps and averages given by a bi-grid filtering algorithm. Finally, the book explains how these results can be extended to other more sophisticated conforming and non-conforming finite element methods, in particular to quadratic finite elements, local discontinuous Galerkin methods and a version of the SIPG method adding penalization on the normal derivatives of the numerical solution at the grid points. This work is the first publication to contain a rigorous analysis of the discontinuous Galerkin methods for wave control problems. It will be of interest to a range of researchers specializing in wave approximations.
商品描述(中文翻譯)
本書描述了所謂的對稱內部懲罰不連續Galerkin (SIPG) 近似在一維波方程中的傳播特性。這是通過在均勻網格上進行線性近似來實現的。首先,進行了仔細的傅立葉分析,突顯了與數值解的兩個組件(平均值和跳躍)相關的兩個傅立葉光譜分支或光譜圖(物理和虛假)的共存。還通過先前證明適用於經典方案(如有限差分或P1經典有限元素)的技術,開發了有效的過濾機制。特別地,本書提供了一個證明,表明通過考慮初始數據的零跳躍和由雙網格過濾算法給出的平均值,均勻可觀性特性是均勻恢復的。最後,本書解釋了如何將這些結果擴展到其他更複雜的符合和不符合的有限元素方法,特別是二次有限元素、局部不連續Galerkin方法以及一種在網格點對數值解的法向導數添加懲罰的SIPG方法版本。本工作是首個包含不連續Galerkin方法在波控制問題中進行嚴謹分析的出版物,將引起專注於波近似的研究人員的興趣。