Thoughtful Machine Learning: A Test-Driven Approach (Paperback)
暫譯: 深思熟慮的機器學習:測試驅動的方法 (平裝本)
Matthew Kirk
- 出版商: O'Reilly
- 出版日期: 2014-11-11
- 定價: $1,420
- 售價: 9.5 折 $1,349
- 語言: 英文
- 頁數: 236
- 裝訂: Paperback
- ISBN: 1449374069
- ISBN-13: 9781449374068
-
相關分類:
TDD 測試導向開發、Machine Learning
立即出貨
買這商品的人也買了...
-
$990$891 -
$620$527 -
$690$587 -
$580$458 -
$650$553 -
$400$380 -
$1,782Data Science for Business: What you need to know about data mining and data-analytic thinking (Paperback)
-
$940$700 -
$680$537 -
$750$735 -
$1,078Design With Operational Amplifiers And Analog Integrated Circuits, 4/e (IE-Paperback)
-
$360$284 -
$780$616 -
$400$316 -
$500$395 -
$620$484 -
$350$277 -
$420$332 -
$520$411 -
$780$616 -
$360$284 -
$480$379 -
$560$437 -
$650$553 -
$390$308
商品描述
Learn how to apply test-driven development (TDD) to machine-learning algorithms—and catch mistakes that could sink your analysis. In this practical guide, author Matthew Kirk takes you through the principles of TDD and machine learning, and shows you how to apply TDD to several machine-learning algorithms, including Naive Bayesian classifiers and Neural Networks.
Machine-learning algorithms often have tests baked in, but they can’t account for human errors in coding. Rather than blindly rely on machine-learning results as many researchers have, you can mitigate the risk of errors with TDD and write clean, stable machine-learning code. If you’re familiar with Ruby 2.1, you’re ready to start.
- Apply TDD to write and run tests before you start coding
- Learn the best uses and tradeoffs of eight machine learning algorithms
- Use real-world examples to test each algorithm through engaging, hands-on exercises
- Understand the similarities between TDD and the scientific method for validating solutions
- Be aware of the risks of machine learning, such as underfitting and overfitting data
- Explore techniques for improving your machine-learning models or data extraction
商品描述(中文翻譯)
學習如何將測試驅動開發(TDD)應用於機器學習演算法,並捕捉可能影響分析的錯誤。在這本實用指南中,作者 Matthew Kirk 會帶您了解 TDD 和機器學習的原則,並展示如何將 TDD 應用於幾種機器學習演算法,包括朴素貝葉斯分類器和神經網絡。
機器學習演算法通常內建測試,但無法考慮到編碼中的人為錯誤。與許多研究人員盲目依賴機器學習結果不同,您可以透過 TDD 減少錯誤風險,並撰寫乾淨、穩定的機器學習代碼。如果您熟悉 Ruby 2.1,您就可以開始了。
- 應用 TDD 在開始編碼之前撰寫和運行測試
- 學習八種機器學習演算法的最佳使用情境和權衡
- 使用真實世界的範例,通過引人入勝的實作練習測試每個演算法
- 理解 TDD 與科學方法在驗證解決方案上的相似性
- 了解機器學習的風險,例如資料的欠擬合和過擬合
- 探索改善機器學習模型或資料提取的技術