Thoughtful Machine Learning: A Test-Driven Approach (Paperback)
暫譯: 深思熟慮的機器學習:測試驅動的方法 (平裝本)
Matthew Kirk
- 出版商: O'Reilly
- 出版日期: 2014-11-11
- 定價: $1,420
- 售價: 9.5 折 $1,349
- 貴賓價: 9.0 折 $1,278
- 語言: 英文
- 頁數: 236
- 裝訂: Paperback
- ISBN: 1449374069
- ISBN-13: 9781449374068
-
相關分類:
Machine Learning、TDD 測試導向開發
立即出貨
買這商品的人也買了...
-
C++ Primer, 4/e (中文版)$990$891 -
大話設計模式$620$490 -
Linux Device Driver Programming 驅動程式設計$690$587 -
JavaScript & jQuery: The Missing Manual 國際中文版, 2/e
$580$458 -
跟 Adobe 徹底研究 Photoshop CS6 (Adobe Photoshop CS6 Classroom in a Book)$650$553 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
Data Science for Business: What you need to know about data mining and data-analytic thinking (Paperback)$1,980$1,881 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
經濟學 (Gregory Mankiw: Principles of Economics, 7/e)$750$735 -
Design With Operational Amplifiers And Analog Integrated Circuits, 4/e (IE-Paperback)$1,100$1,078 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
程式設計人應該知道的 97 件事 | 來自專家的集體智慧 (97 Things Every Programmer Should Know: Collective Wisdom from the Experts)$400$316 -
iOS 8 程式設計實戰--205 個快速上手的開發技巧$500$395 -
Eclipse 完全攻略(第三版):從基礎 Java 到 PDE 外掛開發$620$484 -
啊哈!圖解演算法必學基礎$350$298 -
Swift初學特訓班--iOS App 開發快速養成與實戰(附近3小時新手入門與關鍵影音教學/全書範例程式)$420$332 -
Node.js 實戰手冊 (Node.js in Action)$520$411 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
WordPress 架站的 12堂課|網域申請x架設x佈景主題x廣告申請$480$379 -
Python 程式設計實務-從初學到活用 Python 開發技巧的16堂課$560$437 -
Entity Framework 實務精要$650$553 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308
商品描述
Learn how to apply test-driven development (TDD) to machine-learning algorithms—and catch mistakes that could sink your analysis. In this practical guide, author Matthew Kirk takes you through the principles of TDD and machine learning, and shows you how to apply TDD to several machine-learning algorithms, including Naive Bayesian classifiers and Neural Networks.
Machine-learning algorithms often have tests baked in, but they can’t account for human errors in coding. Rather than blindly rely on machine-learning results as many researchers have, you can mitigate the risk of errors with TDD and write clean, stable machine-learning code. If you’re familiar with Ruby 2.1, you’re ready to start.
- Apply TDD to write and run tests before you start coding
- Learn the best uses and tradeoffs of eight machine learning algorithms
- Use real-world examples to test each algorithm through engaging, hands-on exercises
- Understand the similarities between TDD and the scientific method for validating solutions
- Be aware of the risks of machine learning, such as underfitting and overfitting data
- Explore techniques for improving your machine-learning models or data extraction
商品描述(中文翻譯)
學習如何將測試驅動開發(TDD)應用於機器學習演算法,並捕捉可能影響分析的錯誤。在這本實用指南中,作者 Matthew Kirk 會帶您了解 TDD 和機器學習的原則,並展示如何將 TDD 應用於幾種機器學習演算法,包括朴素貝葉斯分類器和神經網絡。
機器學習演算法通常內建測試,但無法考慮到編碼中的人為錯誤。與許多研究人員盲目依賴機器學習結果不同,您可以透過 TDD 減少錯誤風險,並撰寫乾淨、穩定的機器學習代碼。如果您熟悉 Ruby 2.1,您就可以開始了。
- 應用 TDD 在開始編碼之前撰寫和運行測試
- 學習八種機器學習演算法的最佳使用情境和權衡
- 使用真實世界的範例,通過引人入勝的實作練習測試每個演算法
- 理解 TDD 與科學方法在驗證解決方案上的相似性
- 了解機器學習的風險,例如資料的欠擬合和過擬合
- 探索改善機器學習模型或資料提取的技術
