Anonymizing Health Data: Case Studies and Methods to Get You Started Paperback
暫譯: 健康數據匿名化:案例研究與入門方法 平裝本

Khaled El Emam, Luk Arbuckle

  • 出版商: O'Reilly
  • 出版日期: 2014-01-21
  • 售價: $1,430
  • 貴賓價: 9.5$1,359
  • 語言: 英文
  • 頁數: 228
  • 裝訂: Paperback
  • ISBN: 1449363075
  • ISBN-13: 9781449363079
  • 已過版

相關主題

商品描述

Updated as of August 2014, this practical book will demonstrate proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets.

Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book demonstrates techniques for handling different data types, based on the authors’ experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others.

  • Understand different methods for working with cross-sectional and longitudinal datasets
  • Assess the risk of adversaries who attempt to re-identify patients in anonymized datasets
  • Reduce the size and complexity of massive datasets without losing key information or jeopardizing privacy
  • Use methods to anonymize unstructured free-form text data
  • Minimize the risks inherent in geospatial data, without omitting critical location-based health information
  • Look at ways to anonymize coding information in health data
  • Learn the challenge of anonymously linking related datasets

商品描述(中文翻譯)

更新至2014年8月,本書將展示經過驗證的健康數據匿名化方法,幫助您的組織分享有意義的數據集,而不暴露患者身份。領先專家Khaled El Emam和Luk Arbuckle將引導您了解基於風險的方法論,並使用他們在去識別化數百個數據集方面的案例研究。

臨床數據對於研究和其他類型的分析非常有價值,但在不妨礙數據質量的情況下使其匿名是相當棘手的。本書展示了處理不同數據類型的技術,基於作者在母嬰登記、住院病人出院摘要、健康保險索賠、電子病歷數據庫以及世界貿易中心災難登記等方面的經驗。

- 了解處理橫斷面和縱向數據集的不同方法
- 評估試圖在匿名數據集中重新識別患者的對手的風險
- 在不失去關鍵信息或危害隱私的情況下,減少龐大數據集的大小和複雜性
- 使用方法來匿名化非結構化的自由格式文本數據
- 在不省略關鍵位置相關健康信息的情況下,最小化地理空間數據固有的風險
- 探討在健康數據中匿名化編碼信息的方法
- 學習匿名鏈接相關數據集的挑戰