Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition)

Luis Enrique Sucar

  • 出版商: Springer
  • 出版日期: 2015-06-30
  • 售價: $3,120
  • 貴賓價: 9.5$2,964
  • 語言: 英文
  • 頁數: 253
  • 裝訂: Hardcover
  • ISBN: 1447166981
  • ISBN-13: 9781447166986
  • 相關分類: Computer Vision
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.

商品描述(中文翻譯)

這本易於理解的文本/參考書從工程的角度提供了對概率圖模型(PGMs)的基本介紹。書中涵蓋了每個主要類別的PGMs的基本原理,包括表示法、推理和學習原則,並回顧了每種類型模型的實際應用。這些應用來自廣泛的學科,突顯了貝葉斯分類器、隱馬可夫模型、貝葉斯網絡、動態和時間貝葉斯網絡、馬可夫隨機場、影響圖和馬可夫決策過程的多種用途。特點包括:提供一個統一的框架,涵蓋所有主要類別的PGMs;描述不同技術的實際應用;檢視該領域的最新發展,涵蓋多維貝葉斯分類器、關聯圖模型和因果模型;在每章結尾提供練習題、進一步閱讀的建議以及研究或程式設計項目的想法。