Principles of Data Mining, 2/e (Paperback)
暫譯: 資料探勘原理 (第二版)
Max Bramer
- 出版商: Springer
- 出版日期: 2013-03-08
- 售價: $2,480
- 貴賓價: 9.5 折 $2,356
- 語言: 英文
- 頁數: 456
- 裝訂: Paperback
- ISBN: 1447148835
- ISBN-13: 9781447148838
-
相關分類:
Data-mining
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$550$435 -
$250人像攝影完全自學手冊
-
$780$616 -
$450$356 -
$1,750$1,663 -
$400$380 -
$480$408 -
$100$95 -
$680$537 -
$480$408 -
$360$284 -
$360$284 -
$780$616 -
$580$452 -
$690$545 -
$450$356 -
$500$395 -
$500$395 -
$550$435 -
$380$300 -
$350$277 -
$680$537 -
$580$452 -
$1,500$1,185 -
$520$411
商品描述
Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas.
Principles of Data Mining explains and explores the principal techniques of Data Mining: for classification, association rule mining and clustering. Each topic is clearly explained and illustrated by detailed worked examples, with a focus on algorithms rather than mathematical formalism. It is written for readers without a strong background in mathematics or statistics, and any formulae used are explained in detail.
This second edition has been expanded to include additional chapters on using frequent pattern trees for Association Rule Mining, comparing classifiers, ensemble classification and dealing with very large volumes of data.
Principles of Data Mining aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field.
Suitable as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science.
商品描述(中文翻譯)
資料探勘(Data Mining)是從數據中自動提取隱含且潛在有用資訊的過程,越來越多地應用於商業、科學及其他應用領域。
《資料探勘原理》(Principles of Data Mining)解釋並探討資料探勘的主要技術:分類、關聯規則挖掘(association rule mining)和聚類(clustering)。每個主題都清楚地解釋並通過詳細的實例進行說明,重點放在演算法上,而非數學形式。該書是為沒有強大數學或統計背景的讀者所寫,所使用的任何公式都會詳細解釋。
本第二版擴展了內容,新增了使用頻繁模式樹(frequent pattern trees)進行關聯規則挖掘的章節、分類器比較、集成分類(ensemble classification)以及處理非常大數據量的內容。
《資料探勘原理》旨在幫助一般讀者發展對「黑箱」內部運作的必要理解,使他們能夠有辨別地使用商業資料探勘套件,同時也使進階讀者或學術研究者能夠理解或貢獻於該領域未來的技術進步。
適合作為本科或研究生層級的課程教材,涵蓋計算機科學、商業研究、市場行銷、人工智慧、生物資訊學及法醫科學等廣泛主題。