Principles of Data Mining, 2/e (Paperback)

Max Bramer

  • 出版商: Springer
  • 出版日期: 2013-03-08
  • 售價: $2,450
  • 貴賓價: 9.5$2,328
  • 語言: 英文
  • 頁數: 456
  • 裝訂: Paperback
  • ISBN: 1447148835
  • ISBN-13: 9781447148838
  • 相關分類: Data-mining
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas.

Principles of Data Mining explains and explores the principal techniques of Data Mining: for classification, association rule mining and clustering. Each topic is clearly explained and illustrated by detailed worked examples, with a focus on algorithms rather than mathematical formalism. It is written for readers without a strong background in mathematics or statistics, and any formulae used are explained in detail.

This second edition has been expanded to include additional chapters on using frequent pattern trees for Association Rule Mining, comparing classifiers, ensemble classification and dealing with very large volumes of data.

Principles of Data Mining aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field.

Suitable as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science.

商品描述(中文翻譯)

資料探勘(Data Mining)是從資料中自動提取隱含且有潛在用途的資訊,並在商業、科學和其他應用領域中越來越廣泛地應用。

《資料探勘原理》(Principles of Data Mining)解釋並探索了資料探勘的主要技術:分類、關聯規則探勘和聚類。每個主題都有清晰的解釋和詳細的實例演示,重點放在算法上而不是數學形式上。本書針對沒有強大數學或統計背景的讀者撰寫,並對使用的公式進行了詳細解釋。

第二版增加了關於使用頻繁模式樹進行關聯規則探勘、分類器比較、集成分類和處理大量數據的額外章節。

《資料探勘原理》旨在幫助一般讀者對“黑盒子”內部有必要的理解,以便能夠有選擇地使用商業資料探勘軟體,同時也使高級讀者或學術研究人員能夠理解或貢獻於該領域未來的技術進步。

適合作為本科或研究生課程的教科書,支援各種學科,包括計算機科學、商業研究、市場營銷、人工智慧、生物信息學和法醫科學。