An Introduction to Applied Multivariate Analysis with R (2011) ( Use R! )
暫譯: 應用多變量分析導論與 R (2011) (使用 R!)

Brian Everitt

  • 出版商: Springer
  • 出版日期: 2011-05-03
  • 售價: $3,370
  • 貴賓價: 9.5$3,202
  • 語言: 英文
  • 頁數: 288
  • 裝訂: Paperback
  • ISBN: 1441996494
  • ISBN-13: 9781441996497
  • 相關分類: R 語言
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos.

An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

商品描述(中文翻譯)

大多數由各學科研究人員收集的數據集都是多變量的,這意味著對數據集中的每個單位進行了多項測量、觀察或記錄。這些單位可能是人類受試者、考古文物、國家或各種其他事物。在少數情況下,單獨隔離每個變量並分開研究是合理的,但在大多數情況下,所有變量需要同時檢查,以便充分理解數據的結構和關鍵特徵。為此,某種多變量分析方法可能會有所幫助,而本書主要關注的就是這些方法。多變量分析包括描述和探索這類數據的方法,以及對其進行正式推斷的方法。所有技術的目標一般來說是,在噪聲存在的情況下顯示或提取數據中的信號,並找出數據在其表面混亂中所顯示的內容。

《使用 R 的應用多變量分析導論》探討了這些方法的正確應用,以便從手頭的數據中提取盡可能多的信息,特別是通過 R 軟體進行某種類型的圖形表示。在整本書中,作者提供了許多使用 R 代碼將多變量技術應用於多變量數據的示例。