Computational Intelligent Data Analysis for Sustainable Development (Hardcover)
暫譯: 可持續發展的計算智能數據分析(精裝版)

Ting Yu, Nitesh Chawla, Simeon Simoff

  • 出版商: CRC
  • 出版日期: 2013-04-04
  • 售價: $3,465
  • 貴賓價: 9.5$3,292
  • 語言: 英文
  • 頁數: 440
  • 裝訂: Hardcover
  • ISBN: 1439895945
  • ISBN-13: 9781439895948
  • 相關分類: Data Science
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems.

With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors.

The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights.

The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process.

Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment.

In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy.

Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.

商品描述(中文翻譯)

超越簡單分析的範疇,參與計算智能數據分析這一高度動態領域的研究人員設計出能夠解決不斷複雜化的數據問題的演算法,這些問題存在於經濟、環境和社會數據等不斷變化的環境中。《計算智能數據分析與可持續發展》提出了自動處理這類數據以支持可持續發展理性決策的新方法。通過眾多案例研究和應用,該書闡述了重要的數據分析方法,包括數學優化、機器學習、信號處理以及時間和空間分析,用於量化和描述可持續發展問題。

該書專注於綜合可持續性分析,提出了一種大規模二次規劃演算法,將國家層級的高解析度投入產出表擴展到跨國層級,以測量整個貿易供應鏈的碳足跡。它還量化了不同重新分類和聚合方案之間的誤差或離散度,揭示了聚合誤差在特定區域和行業中高度集中。

該書總結了數據分析社群對氣候變化研究的最新貢獻。各類型的氣候數據豐富可用,為未來的數據挖掘和機器學習研究提供了豐富的土壤。該書還特別關注當前氣候模型未能處理的氣候極端科學中的幾個關鍵挑戰。它討論了在物理理解或基於物理的建模與數據驅動的見解之間建立緊密整合的潛在概念和方法論方向。

接著,該書涵蓋了物種和生態價值土地的保護。賓夕法尼亞州泥土和碎石道路計劃的案例研究顯示,多目標線性規劃是一種比廣泛使用的效益目標選擇過程更具多樣性和效率的方法。

在可再生能源和智能電網需求方面,該書探討了持續轉型為可持續能源系統的可再生資源如何導致從需求驅動的發電轉向發電驅動的需求的範式轉變。它展示了如何通過建立超級電網或將可再生資源與需求管理和儲存相結合來最大化可再生能源作為電力的使用。該書還介紹了智能數據分析,用於從現有的基於互聯網的頻率監測網絡收集的電力系統頻率數據中實時檢測擾動事件,並評估一組計算智能技術以進行長期風能資源評估。

此外,該書舉例說明了如何使用時間和空間數據分析工具來收集行為數據的知識,並解決重要的社會問題,如犯罪行為。它還將約束邏輯編程應用於規劃問題:意大利艾米利亞-羅馬涅地區的區域能源計劃的環境和社會影響評估。

可持續發展問題,如全球暖化、資源短缺、全球物種喪失和污染,推動研究人員創造強大的數據分析方法,分析師可以利用這些方法深入了解這些問題,以支持理性決策。本書向數據分析和可持續發展社群展示了如何使用智能數據分析工具來解決實際問題,並鼓勵研究人員開發更好的方法。