Computational Business Analytics (Hardcover)
暫譯: 計算商業分析 (精裝版)
Subrata Das
- 出版商: CRC
- 出版日期: 2013-12-14
- 售價: $5,810
- 貴賓價: 9.5 折 $5,520
- 語言: 英文
- 頁數: 516
- 裝訂: Hardcover
- ISBN: 1439890706
- ISBN-13: 9781439890707
海外代購書籍(需單獨結帳)
相關主題
商品描述
Learn How to Properly Use the Latest Analytics Approaches in Your Organization
Computational Business Analytics presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies.
The book first covers core descriptive and inferential statistics for analytics. The author then enhances numerical statistical techniques with symbolic artificial intelligence (AI) and machine learning (ML) techniques for richer predictive and prescriptive analytics. With a special emphasis on methods that handle time and textual data, the text:
- Enriches principal component and factor analyses with subspace methods, such as latent semantic analyses
- Combines regression analyses with probabilistic graphical modeling, such as Bayesian networks
- Extends autoregression and survival analysis techniques with the Kalman filter, hidden Markov models, and dynamic Bayesian networks
- Embeds decision trees within influence diagrams
- Augments nearest-neighbor and k-means clustering techniques with support vector machines and neural networks
These approaches are not replacements of traditional statistics-based analytics; rather, in most cases, a generalized technique can be reduced to the underlying traditional base technique under very restrictive conditions. The book shows how these enriched techniques offer efficient solutions in areas, including customer segmentation, churn prediction, credit risk assessment, fraud detection, and advertising campaigns.
商品描述(中文翻譯)
學習如何在您的組織中正確使用最新的分析方法
計算商業分析 提供了適用於多個領域的描述性、預測性和規範性分析的工具和技術。通過來自各個領域的許多範例和挑戰性案例研究,實務工作者可以輕鬆看到與自己問題的聯繫,並能夠制定自己的解決策略。
本書首先涵蓋了分析的核心描述性和推論統計。然後,作者利用符號人工智慧 (AI) 和機器學習 (ML) 技術增強數值統計技術,以提供更豐富的預測性和規範性分析。文本特別強調處理時間和文本數據的方法,具體包括:
- 利用子空間方法(如潛在語義分析)豐富主成分分析和因子分析
- 將回歸分析與概率圖模型(如貝葉斯網絡)結合
- 利用卡爾曼濾波器、隱馬爾可夫模型和動態貝葉斯網絡擴展自回歸和生存分析技術
- 將決策樹嵌入影響圖中
- 利用支持向量機和神經網絡增強最近鄰和 k-均值聚類技術
這些方法並不是傳統基於統計的分析的替代品;相反,在大多數情況下,一種通用技術可以在非常嚴格的條件下簡化為基礎的傳統技術。本書展示了這些增強技術如何在客戶細分、流失預測、信用風險評估、欺詐檢測和廣告活動等領域提供有效的解決方案。