Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions (Hardcover)
暫譯: 支持向量機:基於優化的理論、演算法與擴展 (精裝版)
Naiyang Deng, Yingjie Tian, Chunhua Zhang
- 出版商: CRC
- 出版日期: 2012-12-17
- 售價: $3,600
- 貴賓價: 9.5 折 $3,420
- 語言: 英文
- 頁數: 363
- 裝訂: Hardcover
- ISBN: 143985792X
- ISBN-13: 9781439857922
-
相關分類:
Algorithms-data-structures
立即出貨 (庫存=1)
買這商品的人也買了...
-
$480$379 -
$1,920Practical UML Statecharts in C/C++, 2/e: Event-Driven Programming for Embedded Systems
-
$1,225Data Mining: Practical Machine Learning Tools and Techniques, 3/e (Paperback)
-
$450$356 -
$1,500$1,425 -
$580$458 -
$1,620$1,539 -
$580$452 -
$580$458 -
$400$316 -
$580$458 -
$880$748 -
$450$351 -
$380$300 -
$250$238 -
$500$395 -
$380$300 -
$860$731 -
$400$316 -
$880$695 -
$550$435 -
$580$452 -
$400$380 -
$360$284 -
$420$332
商品描述
Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)—classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.
The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twin SVMs for binary classification problems, SVMs for solving multi-classification problems based on ordinal regression, SVMs for semi-supervised problems, and SVMs for problems with perturbations.
To improve readability, concepts, methods, and results are introduced graphically and with clear explanations. For important concepts and algorithms, such as the Crammer-Singer SVM for multi-class classification problems, the text provides geometric interpretations that are not depicted in current literature.
Enabling a sound understanding of SVMs, this book gives beginners as well as more experienced researchers and engineers the tools to solve real-world problems using SVMs.
商品描述(中文翻譯)
《支持向量機:基於優化的理論、演算法與擴展》提供了對支持向量機(SVM)的兩個主要組成部分——分類問題和回歸問題的易懂處理。該書強調了優化理論與SVM之間的密切聯繫,因為優化是SVM建立的基石之一。
作者分享了他們許多研究成果的見解。他們對C-支持向量分類的統計學習理論給出了精確的詮釋。他們還討論了用於二元分類問題的正則化雙SVM、基於序回歸的多類別分類問題的SVM、半監督問題的SVM,以及處於擾動下的問題的SVM。
為了提高可讀性,概念、方法和結果以圖形方式和清晰的解釋進行介紹。對於重要的概念和演算法,例如用於多類別分類問題的Crammer-Singer SVM,文本提供了當前文獻中未描繪的幾何詮釋。
本書使讀者能夠深入理解SVM,為初學者以及更有經驗的研究人員和工程師提供了使用SVM解決現實世界問題的工具。