Music Data Mining (Hardcover)
暫譯: 音樂數據挖掘 (精裝版)

Tao Li, Mitsunori Ogihara, George Tzanetakis

  • 出版商: CRC
  • 出版日期: 2011-07-12
  • 售價: $3,060
  • 貴賓價: 9.5$2,907
  • 語言: 英文
  • 頁數: 384
  • 裝訂: Hardcover
  • ISBN: 1439835527
  • ISBN-13: 9781439835524
  • 相關分類: Data-mining
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

商品描述

The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing.

The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classification, it then describes a computational approach inspired by human auditory perception and examines instrument recognition, the effects of music on moods and emotions, and the connections between power laws and music aesthetics. Given the importance of social aspects in understanding music, the text addresses the use of the Web and peer-to-peer networks for both music data mining and evaluating music mining tasks and algorithms. It also discusses indexing with tags and explains how data can be collected using online human computation games. The final chapters offer a balanced exploration of hit song science as well as a look at symbolic musicology and data mining.

The multifaceted nature of music information often requires algorithms and systems using sophisticated signal processing and machine learning techniques to better extract useful information. An excellent introduction to the field, this volume presents state-of-the-art techniques in music data mining and information retrieval to create novel ways of interacting with large music collections.

商品描述(中文翻譯)

音樂資訊檢索的研究領域逐漸演變,以應對有效訪問和互動大量音樂及相關數據(如風格、藝術家、歌詞和評論)的挑戰。《音樂數據挖掘》匯集了一系列跨學科的頂尖研究者,提出多種方法,成功運用數據挖掘技術進行音樂處理。

本書首先涵蓋音樂數據挖掘任務和算法以及音頻特徵提取,為後續章節提供框架。接著,專注於數據分類,描述了一種受人類聽覺感知啟發的計算方法,並探討樂器識別、音樂對情緒和心情的影響,以及冪律與音樂美學之間的關聯。考慮到社會因素在理解音樂中的重要性,文本討論了使用網路和點對點網絡進行音樂數據挖掘及評估音樂挖掘任務和算法的方式。它還討論了使用標籤進行索引,並解釋了如何通過在線人類計算遊戲收集數據。最後幾章提供了對熱門歌曲科學的平衡探索,以及對符號音樂學和數據挖掘的探討。

音樂資訊的多面性通常需要使用複雜的信號處理和機器學習技術的算法和系統,以更好地提取有用信息。作為該領域的優秀入門書籍,本卷介紹了音樂數據挖掘和資訊檢索的最先進技術,創造與大型音樂收藏互動的新方法。