Computer Vision Metrics: Survey, Taxonomy, and Analysis(BY dhl)
Scott Krig
- 出版商: Apress
- 出版日期: 2014-05-30
- 售價: $1,860
- 貴賓價: 9.5 折 $1,767
- 語言: 英文
- 頁數: 508
- 裝訂: Paperback
- ISBN: 1430259299
- ISBN-13: 9781430259299
-
相關分類:
Computer Vision
-
相關翻譯:
計算機視覺度量深入解析 (Computer Vision Metrics Survey, Taxonomy, and Analysis) (簡中版)
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$380$342 -
$1,500$1,425 -
$3,120$2,964 -
$383學習 OpenCV (中文版) (Learning OpenCV: Computer Vision with the OpenCV Library)
-
$1,200$1,140 -
$520$468 -
$520$494 -
$620$527 -
$1,190$1,131 -
$301OpenCV 計算機視覺編程攻略, 2/e
-
$454OpenCV 圖像處理編程實例
-
$352Python 計算機視覺編程 (Programming Computer Vision with Python)
-
$580$458 -
$480$379 -
$454OpenCV 編程案例詳解
-
$301OpenCV 實例精解
-
$480$379 -
$590$502 -
$147數學之美, 2/e
-
$680$578 -
$500$395 -
$360$281 -
$480$379 -
$580$458 -
$699$594
相關主題
商品描述
Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
商品描述(中文翻譯)
《計算機視覺指標》提供了對100多種當前和歷史上的特徵描述和機器視覺方法的廣泛調查和分析,並提供了對於局部、區域和全局特徵的詳細分類。本書提供了必要的背景知識,以便理解為什麼興趣點檢測器和特徵描述符實際上是如何工作的,它們是如何設計的,以及調整方法以實現特定應用的魯棒性和不變性目標的觀察。這份調查的廣度超過了深度,提供了超過540個參考資料供進一步研究。分類包括搜索方法、頻譜組件、描述符表示、形狀、距離函數、準確性、效率、魯棒性和不變性屬性等。本書不僅提供了「如何」的源代碼示例和捷徑,還提供了對於許多優秀的OpenCV社區源代碼資源的對話,以供實踐者參考。