Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques (Hardcover)
暫譯: 隱私保護數據發布導論:概念與技術 (精裝版)

Benjamin C.M. Fung, Ke Wang, Ada Wai-Chee Fu, Philip S. Yu

買這商品的人也買了...

相關主題

商品描述

Gaining access to high-quality data is a vital necessity in knowledge-based decision making. But data in its raw form often contains sensitive information about individuals. Providing solutions to this problem, the methods and tools of privacy-preserving data publishing enable the publication of useful information while protecting data privacy. Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques presents state-of-the-art information sharing and data integration methods that take into account privacy and data mining requirements.

The first part of the book discusses the fundamentals of the field. In the second part, the authors present anonymization methods for preserving information utility for specific data mining tasks. The third part examines the privacy issues, privacy models, and anonymization methods for realistic and challenging data publishing scenarios. While the first three parts focus on anonymizing relational data, the last part studies the privacy threats, privacy models, and anonymization methods for complex data, including transaction, trajectory, social network, and textual data.

This book not only explores privacy and information utility issues but also efficiency and scalability challenges. In many chapters, the authors highlight efficient and scalable methods and provide an analytical discussion to compare the strengths and weaknesses of different solutions.

商品描述(中文翻譯)

獲取高品質數據是基於知識的決策中至關重要的需求。然而,原始數據通常包含有關個人的敏感信息。針對這一問題,隱私保護數據發布的方法和工具使得在保護數據隱私的同時,能夠發布有用的信息。《隱私保護數據發布導論:概念與技術》介紹了考慮到隱私和數據挖掘需求的最先進的信息共享和數據整合方法。

本書的第一部分討論了該領域的基本原理。在第二部分中,作者提出了針對特定數據挖掘任務的保留信息效用的匿名化方法。第三部分考察了現實且具有挑戰性的數據發布場景中的隱私問題、隱私模型和匿名化方法。雖然前三部分專注於關聯數據的匿名化,但最後一部分研究了複雜數據(包括交易數據、軌跡數據、社交網絡數據和文本數據)的隱私威脅、隱私模型和匿名化方法。

本書不僅探討了隱私和信息效用問題,還涉及效率和可擴展性挑戰。在許多章節中,作者強調了高效且可擴展的方法,並提供了分析性討論,以比較不同解決方案的優缺點。