Neural Networks : A Classroom Approach, 2/e (Paperback)
Satish Kumar
- 出版商: McGraw-Hill Education
- 出版日期: 2013-01-01
- 定價: $1,150
- 售價: 9.8 折 $1,127
- 語言: 英文
- 頁數: 735
- ISBN: 1259006166
- ISBN-13: 9781259006166
-
相關分類:
DeepLearning
已絕版
買這商品的人也買了...
-
$880$695 -
$620$527 -
$1,380$1,352 -
$6,130$5,824 -
$590$531 -
$8,210$7,800 -
$7,930$7,534 -
$354$336 -
$420$328 -
$1,617Deep Learning (Hardcover)
-
$1,323Cryptography and Network Security: Principles and Practice, 7/e (IE-Paperback)
-
$403神經網絡與機器學習(原書第3版)
-
$484密碼編碼學與網絡安全:原理與實踐, 7/e
-
$450$351 -
$280機器學習入門到實戰 — MATLAB 實踐應用
-
$620$527 -
$650$618 -
$300$270 -
$680$537 -
$500$390 -
$414$393 -
$454OpenCV 4.5 電腦視覺開發實戰 (基於 VC++)
-
$354$336 -
$560數字圖像處理與機器視覺 — Visual C++ 與 Matlab 實現, 2/e
-
$1,680$1,646
相關主題
商品描述
- This revised edition of Neural Networks is an up-to-date exposition of the subject and continues to provide an understanding of the underlying geometry of foundation neural network models while stressing on heuristic explanations of theoretical results. The highlight of this book is its easy-to-read format and a balanced mix of both theory and practice, without compromising on the requisite mathematical rigor. Professor Kumar, in this book, has successfully maintained excellent pictorial description integrated with the concepts and interesting pedagogy to render sound learning.
商品描述(中文翻譯)
這本《神經網絡》修訂版是對該主題的最新闡述,並繼續提供對基礎神經網絡模型的幾何學理解,同時強調對理論結果的啟發性解釋。這本書的亮點在於其易於閱讀的格式,並且在理論和實踐之間取得了平衡,同時不妥協於所需的數學嚴謹性。在這本書中,Kumar教授成功地保持了出色的圖解描述,並結合概念和有趣的教學法,以實現良好的學習效果。
目錄大綱
- Table of Contents
Part I: Traces of History and a Neuroscience Briefer
Chapter 1: The Brain Metaphor
Chapter 2: Lessons from Neuroscience
Part II: Feedforward Neural Networks and Supervised Learning
Chapter 3: Artificial Neurons, Neural Networks and Architectures
Chapter 4: Geometry of Binary Threshold Neurons and Their Networks
Chapter 5: Supervised Learning I: Perceptrons and LMS
Chapter 6: Supervised Learning II: Backpropagation and Beyond
Chapter 7: Neural Networks: A Statistical Pattern Recognition Perspective
Chapter 8: Statistical Learning Theory, Support Vector Machines and Radial Basis Function Networks
Part III: Recurrent Neurodynamical Systems and Unsupervised Learning
Chapter 9: Dynamical Systems Review
Chapter 10: Attractor Neural Networks
Chapter 11: Adaptive Resonance Theory
Chapter 12: Towards the Self-organizing Feature Map
Part IV: Contemporary Topics
Chapter 13: Fuzzy Sets and Fuzzy Systems
Chapter 14: Evolutionary Algorithms
Chapter 15: Soft Computing Goes Hybrid
Chapter 16: Frontiers of Research: Spiking and Quantum Neural Networks
目錄大綱(中文翻譯)
- 目錄
第一部分:歷史的痕跡和神經科學簡介
第1章:大腦的隱喻
第2章:神經科學的教訓
第二部分:前饋神經網絡和監督學習
第3章:人工神經元、神經網絡和架構
第4章:二進制閾值神經元及其網絡的幾何學
第5章:監督學習I:感知器和LMS
第6章:監督學習II:反向傳播及其延伸
第7章:神經網絡:統計模式識別的觀點
第8章:統計學習理論、支持向量機和徑向基函數網絡
第三部分:循環神經動力學系統和非監督學習
第9章:動力系統回顧
第10章:吸引子神經網絡
第11章:適應共振理論
第12章:走向自組織特徵映射
第四部分:當代話題
第13章:模糊集合和模糊系統
第14章:進化算法
第15章:軟計算的混合
第16章:研究前沿:脈衝和量子神經網絡