Swarm Intelligence Methods for Statistical Regression
暫譯: 群體智慧方法於統計回歸分析
Soumya Mohanty
- 出版商: Chapman and Hall/CRC
- 出版日期: 2018-12-11
- 售價: $2,830
- 貴賓價: 9.5 折 $2,689
- 語言: 英文
- 頁數: 136
- 裝訂: Hardcover
- ISBN: 1138558184
- ISBN-13: 9781138558182
海外代購書籍(需單獨結帳)
商品描述
A core task in statistical analysis, especially in the era of Big Data, is the fitting of flexible, high-dimensional, and non-linear models to noisy data in order to capture meaningful patterns. This can often result in challenging non-linear and non-convex global optimization problems. The large data volume that must be handled in Big Data applications further increases the difficulty of these problems. Particle Swarm Optimization for Statistical Regression describes methods from the field of computational swarm intelligence (SI), and how they can be used to overcome the optimization bottleneck encountered in statistical analysis.
Features
- Provides a short, self-contained overview of statistical data analysis and key results in stochastic optimization theory
- Focuses on methodology and results rather than formal proofs
- Reviews swarm intelligence methods with a deeper focus on Particle Swarm Optimization (PSO)
- Uses concrete and realistic data analysis examples to guide the reader
- Includes practical tips and tricks for tuning PSO to extract good performance in real world data analysis challenges
商品描述(中文翻譯)
一個核心任務在統計分析中,特別是在大數據時代,是將靈活的、高維度的和非線性的模型擬合到噪聲數據上,以捕捉有意義的模式。這通常會導致具有挑戰性的非線性和非凸全局優化問題。在大數據應用中必須處理的大量數據進一步增加了這些問題的難度。《粒子群優化在統計回歸中的應用》描述了計算群體智慧(SI)領域的方法,以及它們如何用來克服統計分析中遇到的優化瓶頸。
特點
- 提供統計數據分析和隨機優化理論中的關鍵結果的簡短、自足的概述
- 專注於方法論和結果,而非正式證明
- 回顧群體智慧方法,並更深入地聚焦於粒子群優化(PSO)
- 使用具體且現實的數據分析範例來指導讀者
- 包含調整PSO以在現實世界數據分析挑戰中獲得良好性能的實用技巧和建議