Agent-Based Computational Economics (Routledge Advances in Experimental and Computable Economics)
暫譯: 基於代理的計算經濟學(Routledge 實驗與可計算經濟學進展)
Shu-Heng Chen
- 出版商: Routledge
- 出版日期: 2018-02-12
- 售價: $2,690
- 貴賓價: 9.5 折 $2,556
- 語言: 英文
- 頁數: 528
- 裝訂: Paperback
- ISBN: 1138499714
- ISBN-13: 9781138499713
-
相關分類:
Reinforcement
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
Parallel Optimization: Theory, Algorithms, and Applications (Hardcover)$1,560$1,529 -
編譯系統設計 (Compilers: Principles, Techniques, and Tools, 2/e)$960$864 -
透視 C語言指標-深度探索記憶體管理核心技術 (Understanding and Using C Pointers)$480$379 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
$556Scala 程式設計, 2/e (Programming Scala: Scalability = Functional Programming + Objects, 2/e) -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
鳥哥的 Linux 基礎學習訓練教材$480$408 -
Python 新手使用 Django 架站技術實作:活用 Django 2.0 Web Framework 建構動態網站的 16堂課$690$538 -
$607強化學習 -
Julia 程式設計:新世代資料科學與數值運算語言$480$432 -
Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis$3,350$3,183 -
Docker 專業養成 ─ 活用基礎與實踐技能 (暢銷回饋版)$450$351 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
Python 設計模式$650$514 -
Excel VBA 經典程式碼:一行抵萬行「偷懶程式碼」應用大全 (下)$620$484 -
增壓的 Python|讓程式碼進化到全新境界 (Supercharged Python: Take Your Code to the Next Level)$680$578 -
$505函數程序設計算法 -
深度強化式學習 (Deep Reinforcement Learning in Action)$1,000$790 -
Python 功力提升的樂趣|寫出乾淨程式碼的最佳實務 (Beyond the Basic Stuff with Python)$500$375 -
Deep Learning 3|用 Python 進行深度學習框架的開發實作$780$616 -
Python 刷題鍛鍊班:老手都刷過的 50 道程式題, 求職面試最給力 (Python Workout: 50 ten-minute exercises)$480$379 -
CPython Internals: Your Guide to the Python 3 Interpreter (Paperback)$1,580$1,501 -
核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch)$1,000$790 -
$774Django 5 Web 應用開發實戰 -
FastAPI|現代 Python 網站開發 (FastAPI : Modern Python Web Development)$680$537
商品描述
This book aims to answer two questions that are fundamental to the study of agent-based economic models: what is agent-based computational economics and why do we need agent-based economic modelling of economy? This book provides a review of the development of agent-based computational economics (ACE) from a perspective on how artificial economic agents are designed under the influences of complex sciences, experimental economics, artificial intelligence, evolutionary biology, psychology, anthropology and neuroscience.
This book begins with a historical review of ACE by tracing its origins. From a modelling viewpoint, ACE brings truly decentralized procedures into market analysis, from a single market to the whole economy. This book also reviews how experimental economics and artificial intelligence have shaped the development of ACE. For the former, the book discusses how ACE models can be used to analyse the economic consequences of cognitive capacity, personality and cultural inheritance. For the latter, the book covers the various tools used to construct artificial adaptive agents, including reinforcement learning, fuzzy decision rules, neural networks, and evolutionary computation.
This book will be of interest to graduate students researching computational economics, experimental economics, behavioural economics, and research methodology.
商品描述(中文翻譯)
本書旨在回答兩個對於代理基礎經濟模型研究至關重要的問題:什麼是代理基礎計算經濟學(agent-based computational economics),以及為什麼我們需要代理基礎經濟建模?本書從複雜科學、實驗經濟學、人工智慧、演化生物學、心理學、人類學和神經科學的影響下,回顧了代理基礎計算經濟學(ACE)的發展。
本書首先通過追溯ACE的起源來進行歷史回顧。從建模的角度來看,ACE將真正的去中心化程序引入市場分析,從單一市場擴展到整個經濟體系。本書還回顧了實驗經濟學和人工智慧如何塑造ACE的發展。對於前者,本書討論了ACE模型如何用於分析認知能力、個性和文化遺傳的經濟後果。對於後者,本書涵蓋了用於構建人工適應性代理的各種工具,包括強化學習、模糊決策規則、神經網絡和演化計算。
本書將對研究計算經濟學、實驗經濟學、行為經濟學和研究方法論的研究生感興趣。
