Probability and Statistics for Data Science: Math + R + Data
Matloff, Norman
- 出版商: CRC
- 出版日期: 2019-06-20
- 售價: $2,450
- 貴賓價: 9.5 折 $2,328
- 語言: 英文
- 頁數: 376
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1138393290
- ISBN-13: 9781138393295
-
相關分類:
R 語言、機率統計學 Probability-and-statistics、Data Science
-
相關翻譯:
概率與統計:數據科學視角 (簡中版)
-
其他版本:
Probability and Statistics for Data Science: Math + R + Data
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,754Foundations of Algorithms, 5/e (Paperback)
-
$550$495 -
$348$331 -
$207生成對抗網絡入門指南 (Generative adversarial Networks)
-
$680$612 -
$500$470 -
$600$468 -
$810$770 -
$810$770 -
$780$616 -
$356Python機器學習及實踐
-
$401TensorFlow深度學習及實踐
-
$460$414 -
$600$468 -
$400$380 -
$352電腦網絡基礎(第5版)
-
$422深度學習 — 從神經網絡到深度強化學習的演進
-
$607機器學習導論
-
$500$475 -
$640$627 -
$560$437 -
$600$468 -
$520$494 -
$420$357
相關主題
商品描述
This book covers "math stat"--distributions, expected value, estimation etc.--but takes the phrase "Data Science" in the title quite seriously:
* Real datasets are used extensively.
* All data analysis is supported by R coding.
* Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks.
* Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture."
* Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner.
Prerequisites are calculus, some matrix algebra, and some experience in programming.
Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.
商品描述(中文翻譯)
本書涵蓋了「數理統計」——分佈、期望值、估計等等——但對於「資料科學」這個詞非常認真。本書廣泛使用真實數據集進行數據分析,並且所有的數據分析都有R編程支持。本書包含許多資料科學應用,如主成分分析(PCA)、混合分佈、隨機圖模型、隱馬爾可夫模型、線性和邏輯回歸以及神經網絡。本書引導學生批判性思考統計的「如何」和「為什麼」,並「看到整個大局」。本書不以「定理/證明」為導向,但概念和模型以數學精確的方式陳述。先修要求包括微積分、一些矩陣代數和一些編程經驗。
Norman Matloff是加州大學戴維斯分校的計算機科學教授,曾任該校統計學教授。他是《統計回歸與分類:從線性模型到機器學習》一書的作者,該書獲得了2017年《Technometrics》評論的Ziegel獎最佳書籍獎。他還是《Journal of Statistical Software》和《The R Journal》的編輯委員會成員。他是該大學杰出教學獎的獲獎者。
作者簡介
Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.
作者簡介(中文翻譯)
Norman Matloff是加州大學戴維斯分校的計算機科學教授,曾任該校統計學教授。他是《統計軟體期刊》和《R期刊》的編輯委員會成員。他的書籍《統計回歸與分類:從線性模型到機器學習》獲得了2017年《Technometrics》評選的Ziegel獎最佳書籍獎。他也是該大學傑出教學獎的得主。