Computational Intelligence in Medical Imaging: Techniques and Applications
暫譯: 醫學影像中的計算智能:技術與應用

Schaefer, G., Hassanien, A., Jiang, J.

  • 出版商: CRC
  • 出版日期: 2017-09-12
  • 售價: $3,790
  • 貴賓價: 9.5$3,601
  • 語言: 英文
  • 頁數: 510
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1138112208
  • ISBN-13: 9781138112209
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

CI Techniques & Algorithms for a Variety of Medical Imaging Situations
Documents recent advances and stimulates further research

A compilation of the latest trends in the field, Computational Intelligence in Medical Imaging: Techniques and Applications explores how intelligent computing can bring enormous benefit to existing technology in medical image processing as well as improve medical imaging research. The contributors also cover state-of-the-art research toward integrating medical image processing with artificial intelligence and machine learning approaches.

The book presents numerous techniques, algorithms, and models. It describes neural networks, evolutionary optimization techniques, rough sets, support vector machines, tabu search, fuzzy logic, a Bayesian probabilistic framework, a statistical parts-based appearance model, a reinforcement learning-based multistage image segmentation algorithm, a machine learning approach, Monte Carlo simulations, and intelligent, deformable models. The contributors discuss how these techniques are used to classify wound images, extract the boundaries of skin lesions, analyze prostate cancer, handle the inherent uncertainties in mammographic images, and encapsulate the natural intersubject anatomical variance in medical images. They also examine prostate segmentation in transrectal ultrasound images, automatic segmentation and diagnosis of bone scintigraphy, 3-D medical image segmentation, and the reconstruction of SPECT and PET tomographic images.

商品描述(中文翻譯)

各種醫學影像情境的計算智慧技術與演算法
記錄近期的進展並激發進一步的研究

本書醫學影像中的計算智慧:技術與應用匯編了該領域的最新趨勢,探討智能計算如何為現有的醫學影像處理技術帶來巨大益處,並改善醫學影像研究。貢獻者們還涵蓋了將醫學影像處理與人工智慧及機器學習方法整合的最先進研究。

本書介紹了眾多技術、演算法和模型。它描述了神經網絡、演化優化技術、粗集、支持向量機、禁忌搜尋、模糊邏輯、貝葉斯概率框架、基於統計的部件外觀模型、基於強化學習的多階段影像分割演算法、機器學習方法、蒙地卡羅模擬以及智能可變形模型。貢獻者們討論了這些技術如何用於分類傷口影像、提取皮膚病變的邊界、分析前列腺癌、處理乳腺攝影影像中的固有不確定性,以及封裝醫學影像中的自然個體解剖變異。他們還檢視了在經直腸超聲影像中的前列腺分割、自動分割與骨掃描診斷、三維醫學影像分割,以及SPECT和PET斷層影像的重建。

最後瀏覽商品 (20)