Marginal Space Learning for Medical Image Analysis: Efficient Detection and Segmentation of Anatomical Structures
暫譯: 邊際空間學習於醫學影像分析:高效檢測與分割解剖結構

Yefeng Zheng, Dorin Comaniciu

  • 出版商: Springer
  • 出版日期: 2014-04-17
  • 售價: $2,400
  • 貴賓價: 9.5$2,280
  • 語言: 英文
  • 頁數: 268
  • 裝訂: Hardcover
  • ISBN: 1493905996
  • ISBN-13: 9781493905997
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.

商品描述(中文翻譯)

自動檢測和分割醫學影像中的解剖結構是後續影像測量和疾病量化的前提,因此具有多種臨床應用。本書介紹了一種高效的物體檢測和分割框架,稱為 Marginal Space Learning,該框架在當前桌面電腦上以亞秒速度運行,速度快於最先進的技術。Marginal Space Learning 在經過足夠數量的數據集訓練後,對影像伪影、噪聲和解剖變異也具有良好的穩健性。本書展示了 35 種 Marginal Space Learning 及其擴展在主要醫學影像模式(CT、MRI、X 光和超聲波)中檢測和分割各種解剖結構(如心臟、肝臟、淋巴結和前列腺)的臨床應用,展示了其效率和穩健性。