Smarter Data Science: Succeeding with Enterprise-Grade Data and AI Projects
暫譯: 智慧數據科學:成功實現企業級數據與AI專案

Fishman, Neal, Stryker, Cole, Booch, Grady

商品描述

PRAISE FOR SMARTER DATA SCIENCE

"This work provides benefit to a variety of roles, including architects, developers, product owners, and business executives. For organizations exploring AI, this book is the cornerstone to becoming successful."
--Harry Xuegang Huang Ph.D., External Consultant, A.P. Moller - Maersk

"Presents a holistic model that emphasizes how critical data and data management are in implementing successful value-driven data analytics and AI solutions. The book presents an elegant and novel approach to data management."
--Ali Farahani, Ph.D., Former Chief Data Officer, County of Los Angeles; Adjunct Associate Professor, USC

"The authors seek and speak the truth, and penetrate into the core of the challenge most organizations face in finding value in their data. Our industry needs to move away from trying to connect the winning dots by 'magical' technologies and overly simplified approaches. This book provides the necessary guidance."
--Jan Gravesen, M.Sc., IBM Distinguished Engineer, Director and Chief Technology Officer, IBM

BUILD A ROBUST INFORMATION ARCHITECTURE THAT SCALES AND DELIVERS LONG-TERM VALUE

Large organizations are racing to implement advanced data science. All too often, our AI endeavors turn out to be dead-end science projects that never deliver sustainable business value. What are we missing? In Smarter Data Science: Succeeding with Enterprise-Grade Data and AI Projects, you'll discover the pillars of information architecture that you must understand and implement.

Data analytics and AI only add value when they can predictably and consistently deliver business insights and scale across the organization. Smarter Data Science outlines an effective and practical way for organizing, managing, and evaluating data, so you can establish an information architecture to better drive AI and data science.

You'll learn how to:

  • Simplify data management, making data available when and where it is needed
  • Improve time to value for operationalizing AI use cases
  • Make AI and data insights accessible across the enterprise
  • Scale complex AI scenarios dynamically and in real time
  • Develop an information architecture that brings predictable, repeatable value

商品描述(中文翻譯)

對《更聰明的數據科學》的讚譽

「這本書對多種角色都有益處,包括架構師、開發人員、產品負責人和商業高管。對於探索人工智慧的組織來說,這本書是成功的基石。」
--Harry Xuegang Huang 博士,外部顧問,A.P. Moller - Maersk

「本書提出了一個整體模型,強調數據和數據管理在實施成功的以價值為驅動的數據分析和人工智慧解決方案中的重要性。這本書提供了一種優雅且新穎的數據管理方法。」
--Ali Farahani 博士,前洛杉磯縣首席數據官;南加州大學兼任副教授

「作者追求並揭示真相,深入探討大多數組織在尋找數據價值時所面臨的挑戰。我們的行業需要擺脫依賴『神奇』技術和過於簡化的方法來連接成功的點。這本書提供了必要的指導。」
--Jan Gravesen 碩士,IBM 傑出工程師,IBM 總監及首席技術官

建立一個可擴展且能提供長期價值的穩健資訊架構

大型組織正在競相實施先進的數據科學。然而,我們的人工智慧努力往往變成無法帶來可持續商業價值的死胡同科學專案。我們缺少什麼?在《更聰明的數據科學:成功實現企業級數據和人工智慧專案》中,您將發現必須理解和實施的資訊架構支柱。

數據分析和人工智慧只有在能夠可預測且一致地提供商業洞察並在整個組織中擴展時,才會增加價值。《更聰明的數據科學》概述了一種有效且實用的數據組織、管理和評估方法,讓您能夠建立一個更好地推動人工智慧和數據科學的資訊架構。

您將學會如何:


  • 簡化數據管理,確保數據在需要的時候和地方可用

  • 改善將人工智慧用例運營化的價值時間

  • 使人工智慧和數據洞察在整個企業中可及

  • 動態且即時地擴展複雜的人工智慧場景

  • 開發一個能帶來可預測、可重複價值的資訊架構

作者簡介

NEAL FISHMAN is a Distinguished Engineer and CTO of Data-Based Pathology at IBM. He is an IBM-certified Senior IT Architect and Open Group Distinguished Chief Architect.

COLE STRYKER is a journalist based in Los Angeles. He is the author of Epic Win for Anonymous and Hacking the Future.

作者簡介(中文翻譯)

尼爾·費許曼是IBM數據驅動病理學的傑出工程師及首席技術官。他是IBM認證的高級IT架構師及Open Group傑出首席架構師。

科爾·斯特賴克是一位駐洛杉磯的記者。他是《匿名者的史詩勝利》和《駭客未來》的作者。