Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners
暫譯: 大數據、資料探勘與機器學習:為商業領導者與實務者創造價值

Dean, Jared

  • 出版商: Wiley
  • 出版日期: 2021-12-21
  • 售價: $1,920
  • 貴賓價: 9.5$1,824
  • 語言: 英文
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1119680255
  • ISBN-13: 9781119680253
  • 相關分類: 大數據 Big-dataMachine LearningData-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book provides a comprehensive overview on the recent trend toward high performance computing architectures especially as it relates to analytics, data mining, and machine learning. Topics that are covered include: big data (and its characteristics), high performance computing for analytics, massively parallel processing (MPP) databases, algorithms for big data, in-memory databases, implementation of machine learning algorithms for big data platforms, and analytics environments. However, none gives a historical and comprehensive view of all these separate topics in a single document. Through the understanding of these topics corporations can create an ideal analytic environment that is better suited to the challenges of today's analytics demands.

The book is organized in three parts:

  • Part 1 is designed to introduce the concepts and vocabulary to educate the reader on the current buzz in the area and the tradeoffs or limitations of certain technology and what factors should influence their choices.
  • Part 2 focus on the techniques and methods that can be used with a corporation's data to turn it into value.
  • Part 3 will be a set of detailed Case Studies.

Updates to this edition include:

  • Update introduction
  • Add and update sections in Part 1 about cloud computing, virtualized technology (containers), functions as a service (FAAS), and DevOps methodology.
  • Add a section on Deep Learning in Part 2. This section will cover convolutional neural networks (CNN) which are generally used for computer vision applications and recurrent neural networks (RNN) which are used in text applications or other sequences.
  • Update chapter 3 with major enhancements of R and Python including my contributions to integration of open source with SAS.
  • Update recommendation systems in chapter 9 including Factorization machines

商品描述(中文翻譯)

這本書提供了有關高效能計算架構的最新趨勢的全面概述,特別是與分析、資料探勘和機器學習相關的部分。涵蓋的主題包括:大數據(及其特徵)、用於分析的高效能計算、大規模並行處理(MPP)資料庫、大數據的演算法、內存資料庫、在大數據平台上實現機器學習演算法,以及分析環境。然而,沒有一本書能在單一文件中提供這些獨立主題的歷史和全面視角。透過對這些主題的理解,企業可以創建一個理想的分析環境,更好地應對當今分析需求的挑戰。

本書分為三個部分:
- 第一部分旨在介紹概念和詞彙,以教育讀者當前領域的熱點及某些技術的權衡或限制,以及影響他們選擇的因素。
- 第二部分專注於可以用於企業數據的技術和方法,以將其轉化為價值。
- 第三部分將是一組詳細的案例研究。

本版的更新包括:
- 更新導言
- 在第一部分中新增和更新有關雲計算、虛擬化技術(容器)、作為服務的功能(FAAS)和DevOps方法論的部分。
- 在第二部分新增有關深度學習的部分。這部分將涵蓋通常用於計算機視覺應用的卷積神經網絡(CNN)和用於文本應用或其他序列的遞歸神經網絡(RNN)。
- 更新第三章,包含R和Python的主要增強,包括我對開源與SAS整合的貢獻。
- 更新第九章的推薦系統,包括因式分解機。