Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things
暫譯: 電子預測與健康管理:基礎、機器學習與物聯網
Michael G. Pecht (Editor), Myeongsu Kang (Editor)
- 出版商: Wiley
- 出版日期: 2018-10-01
- 售價: $5,820
- 貴賓價: 9.5 折 $5,529
- 語言: 英文
- ISBN: 1119515335
- ISBN-13: 9781119515333
-
相關分類:
Machine Learning、物聯網 IoT
海外代購書籍(需單獨結帳)
相關主題
商品描述
An indispensable guide for engineers and data scientists in design, testing, operation, manufacturing, and maintenance
A road map to the current challenges and available opportunities for the research and development of Prognostics and Health Management (PHM), this important work covers all areas of electronics and explains how to:
- assess methods for damage estimation of components and systems due to field loading conditions
- assess the cost and benefits of prognostic implementations
- develop novel methods for in situ monitoring of products and systems in actual life-cycle conditions
- enable condition-based (predictive) maintenance
- increase system availability through an extension of maintenance cycles and/or timely repair actions;
- obtain knowledge of load history for future design, qualification, and root cause analysis
- reduce the occurrence of no fault found (NFF)
- subtract life-cycle costs of equipment from reduction in inspection costs, downtime, and inventory
Prognostics and Health Management of Electronics also explains how to understand statistical techniques and machine learning methods used for diagnostics and prognostics. Using this valuable resource, electrical engineers, data scientists, and design engineers will be able to fully grasp the synergy between IoT, machine learning, and risk assessment.
商品描述(中文翻譯)
設計、測試、操作、製造和維護工程師及數據科學家的不可或缺指南
這本重要的著作提供了當前預測與健康管理(Prognostics and Health Management, PHM)研究與開發的挑戰與機會的路線圖,涵蓋了電子學的所有領域,並解釋了如何:
- 評估由於現場負載條件造成的元件和系統損壞估算方法
- 評估預測實施的成本與效益
- 開發新穎的方法以在實際生命週期條件下進行產品和系統的原位監測
- 實現基於狀態的(預測性)維護
- 通過延長維護週期和/或及時修復行動來提高系統可用性
- 獲取負載歷史知識以用於未來的設計、驗證和根本原因分析
- 減少無故障發現(No Fault Found, NFF)的發生
- 從檢查成本、停機時間和庫存的減少中扣除設備的生命週期成本
電子的預測與健康管理 也解釋了如何理解用於診斷和預測的統計技術和機器學習方法。利用這個寶貴的資源,電氣工程師、數據科學家和設計工程師將能夠充分掌握物聯網(IoT)、機器學習和風險評估之間的協同作用。