Model-Based Processing: An Applied Subspace Identification Approach
暫譯: 基於模型的處理:應用子空間識別方法
James V. Candy
- 出版商: Wiley
- 出版日期: 2019-03-19
- 售價: $1,760
- 貴賓價: 9.8 折 $1,725
- 語言: 英文
- 頁數: 544
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119457769
- ISBN-13: 9781119457763
下單後立即進貨 (約5~7天)
相關主題
商品描述
A bridge between the application of subspace-based methods for parameter estimation in signal processing and subspace-based system identification in control systems
Model-Based Processing An Applied Subspace Identification Approach provides expert insight on developing models for designing model-based signal processors (MBSP) employing subspace identification techniques to achieve model-based identification (MBID) and enables readers to evaluate overall performance using validation and statistical analysis methods. Focusing on subspace approaches to system identification problems, this book teaches readers to identify models quickly and incorporate them into various processing problems including state estimation, tracking, detection, classification, controls, communications, and other applications that require reliable models that can be adapted to dynamic environments.
The extraction of a model from data is vital to numerous applications, from the detection of submarines to determining the epicenter of an earthquake to controlling an autonomous vehicles--all requiring a fundamental understanding of their underlying processes and measurement instrumentation. Emphasizing real-world solutions to a variety of model development problems, this text demonstrates how model-based subspace identification system identification enables the extraction of a model from measured data sequences from simple time series polynomials to complex constructs of parametrically adaptive, nonlinear distributed systems. In addition, this resource features:
- Kalman filtering for linear, linearized, and nonlinear systems; modern unscented Kalman filters; as well as Bayesian particle filters
- Practical processor designs including comprehensive methods of performance analysis
- Provides a link between model development and practical applications in model-based signal processing
- Offers in-depth examination of the subspace approach that applies subspace algorithms to synthesized examples and actual applications
- Enables readers to bridge the gap from statistical signal processing to subspace identification
- Includes appendices, problem sets, case studies, examples, and notes for MATLAB
Model-Based Processing: An Applied Subspace Identification Approach is essential reading for advanced undergraduate and graduate students of engineering and science as well as engineers working in industry and academia.
商品描述(中文翻譯)
信號處理中基於子空間的方法與控制系統中的基於子空間的系統識別之間的橋樑
基於模型的處理 應用子空間識別方法 提供了專家見解,幫助讀者開發模型以設計基於模型的信號處理器 (MBSP),利用子空間識別技術實現基於模型的識別 (MBID),並使讀者能夠使用驗證和統計分析方法評估整體性能。本書專注於系統識別問題的子空間方法,教導讀者快速識別模型並將其納入各種處理問題中,包括狀態估計、跟蹤、檢測、分類、控制、通信及其他需要可靠模型的應用,這些模型能夠適應動態環境。
從數據中提取模型對於許多應用至關重要,從潛艇檢測到確定地震震中,再到控制自主車輛——所有這些都需要對其基本過程和測量儀器有基本的理解。本書強調針對各種模型開發問題的現實解決方案,展示了基於模型的子空間識別如何使從測量數據序列中提取模型成為可能,這些數據序列可以是簡單的時間序列多項式,也可以是複雜的參數自適應非線性分佈系統。此外,本書還包含以下內容:
- 線性、線性化和非線性系統的卡爾曼濾波;現代無味卡爾曼濾波器;以及貝葉斯粒子濾波器
- 實用的處理器設計,包括全面的性能分析方法
- 提供模型開發與基於模型的信號處理實際應用之間的聯繫
- 深入探討應用子空間算法於合成範例和實際應用的子空間方法
- 使讀者能夠從統計信號處理過渡到子空間識別
- 包括附錄、習題集、案例研究、範例和 MATLAB 的註解
基於模型的處理:應用子空間識別方法 是工程和科學的高年級本科生及研究生,以及在工業和學術界工作的工程師的必讀書籍。
作者簡介
JAMES V. CANDY, PHD, is Chief Scientist for Engineering, Distinguished Member of the Technical Staff, and founder of the Center for Advanced Signal & Image Sciences (CASIS), Lawrence Livermore National Laboratory, Livermore, California. Dr. Candy is also Adjunct Full-Professor, University of California, Santa Barbara, a Fellow of the IEEE, and a Fellow of the Acoustical Society of America. He is author of Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods and Model-Based Signal Processing (John Wiley & Sons, Inc., 2006) and Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods, Second Edition (John Wiley & Sons, Inc., 2016). Dr. Candy was awarded the IEEE Distinguished Technical Achievement Award for his development of model-based signal processing and the Acoustical Society of America Helmholtz-Rayleigh Interdisciplinary Silver Medal for his contributions to acoustical signal processing and underwater acoustics.
作者簡介(中文翻譯)
**詹姆斯·V·坎迪(JAMES V. CANDY),博士**,是加州利佛摩國家實驗室(Lawrence Livermore National Laboratory)工程首席科學家、技術人員傑出成員及先進信號與影像科學中心(Center for Advanced Signal & Image Sciences, CASIS)的創始人。坎迪博士同時也是加州大學聖巴巴拉分校(University of California, Santa Barbara)的兼任全職教授,IEEE 會士及美國聲學學會(Acoustical Society of America)會士。他是《貝葉斯信號處理:經典、現代及粒子濾波方法》(Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods)及《基於模型的信號處理》(Model-Based Signal Processing)(約翰·威利與兒子公司,John Wiley & Sons, Inc., 2006)以及《貝葉斯信號處理:經典、現代及粒子濾波方法,第二版》(Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods, Second Edition)(約翰·威利與兒子公司,John Wiley & Sons, Inc., 2016)的作者。坎迪博士因其在基於模型的信號處理方面的發展而獲得IEEE傑出技術成就獎,並因其對聲學信號處理及水下聲學的貢獻而獲得美國聲學學會赫爾姆霍茲-雷利跨學科銀獎。