Machine Learning in Python: Essential Techniques for Predictive Analysis
暫譯: Python中的機器學習:預測分析的基本技術

Michael Bowles

買這商品的人也買了...

商品描述

Learn a simpler and more effective way to analyze data and predict outcomes with Python

Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions.

Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language.

  • Predict outcomes using linear and ensemble algorithm families
  • Build predictive models that solve a range of simple and complex problems
  • Apply core machine learning algorithms using Python
  • Use sample code directly to build custom solutions

Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.

商品描述(中文翻譯)

學習一種更簡單且更有效的方式來分析數據並預測結果,使用 Python

Python 中的機器學習 向您展示如何僅使用兩個核心機器學習演算法成功分析數據,以及如何使用 Python 應用它們。通過專注於兩個有效預測結果的演算法家族,本書能夠提供運作機制的完整描述,以及用具體、可修改的代碼來說明這些機制的範例。這些演算法以簡單的術語解釋,沒有複雜的數學,並使用 Python 應用,並提供演算法選擇、數據準備和在實踐中使用訓練模型的指導。您將學習一組核心的 Python 程式設計技術、各種建立預測模型的方法,以及如何衡量每個模型的性能以確保使用正確的模型。本書中有關懲罰性線性回歸和集成方法的章節深入探討每個演算法,您可以使用書中的範例代碼來開發自己的數據分析解決方案。


機器學習演算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計背景,通常還需要結合專門的 R 程式語言。本書展示了如何使用更廣泛使用且易於接觸的 Python 程式語言來實現機器學習。



  • 使用線性和集成演算法家族預測結果

  • 建立解決各種簡單和複雜問題的預測模型

  • 使用 Python 應用核心機器學習演算法

  • 直接使用範例代碼來建立自定義解決方案


機器學習不必是複雜且高度專業化的。Python 使這項技術對更廣泛的受眾更具可接觸性,使用更簡單、有效且經過良好測試的方法。Python 中的機器學習 向您展示如何做到這一點,而不需要廣泛的數學或統計背景。