Power Management Techniques for Integrated Circuit Design (Hardcover)
暫譯: 集成電路設計的電源管理技術 (精裝版)

Ke-Horng Chen

買這商品的人也買了...

相關主題

商品描述

 

<內容簡介>

 

This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption.

*A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management
*Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes
*Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience
*Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors’ manuals, and program downloads

<章節目錄>

 

About the Author xii

Preface xiii

Acknowledgments xv

1 Introduction 1

1.1 Moore’s Law 1

1.2 Technology Process Impact: Power Management IC from 0.5 micro-meter to 28 nano-meter 1

1.2.1 MOSFET Structure 1

1.2.2 Scaling Effects 7

1.2.3 Leakage Power Dissipation 9

1.3 Challenge of Power Management IC in Advanced Technological Products 14

1.3.1 Multi-Vth Technology 14

1.3.2 Performance Boosters 15

1.3.3 Layout-Dependent Proximity Effects 19

1.3.4 Impacts on Circuit Design 20

1.4 Basic Definition Principles in Power Management Module 22

1.4.1 Load Regulation 22

1.4.2 Transient Voltage Variations 23

1.4.3 Conduction Loss and Switching Loss 24

1.4.4 Power Conversion Efficiency 25

References 25

2 Design of Low Dropout (LDO) Regulators 28

2.1 Basic LDO Architecture 29

2.1.1 Types of Pass Device 31

2.2 Compensation Skills 34

2.2.1 Pole Distribution 34

2.2.2 Zero Distribution and Right-Half-Plane (RHP) Zero 40

2.3 Design Consideration for LDO Regulators 42

2.3.1 Dropout Voltage 43

2.3.2 Efficiency 44

2.3.3 Line/Load Regulation 45

2.3.4 Transient Output Voltage Variation Caused by Sudden Load Current Change 46

2.4 Analog-LDO Regulators 50

2.4.1 Characteristics of Dominant-Pole Compensation 50

2.4.2 Characteristics of C-free Structure 56

2.4.3 Design of Low-Voltage C-free LDO Regulator 62

2.4.4 Alleviating Minimum Load Current Constraint through the Current Feedback Compensation (CFC) Technique in the Multi-stage C-free LDO Regulator 66

2.4.5 Multi-stage LDO Regulator with Feedforward Path and Dynamic Gain Adjustment (DGA) 75

2.5 Design Guidelines for LDO Regulators 79

2.5.1 Simulation Tips and Analyses 81

2.5.2 Technique for Breaking the Loop in AC Analysis Simulation 82

2.5.3 Example of the Simulation Results of the LDO Regulator with Dominant-Pole Compensation 85

2.6 Digital-LDO (D-LDO) Design 93

2.6.1 Basic D-LDO 94

2.6.2 D-LDO with Lattice Asynchronous Self-Timed Control 96

2.6.3 Dynamic Voltage Scaling (DVS) 100

2.7 Switchable Digital/Analog-LDO (D/A-LDO) Regulator with Analog DVS Technique 110

2.7.1 ADVS Technique 110

2.7.2 Switchable D/A-LDO Regulator 113

References 120

3 Design of Switching Power Regulators 122

3.1 Basic Concept 122

3.2 Overview of the Control Method and Operation Principle 125

3.3 Small Signal Modeling and Compensation Techniques in SWR 131

3.3.1 Small Signal Modeling of Voltage-Mode SWR 131

3.3.2 Small Signal Modeling of the Closed-Loop Voltage-Mode SWR 135

3.3.3 Small Signal Modeling of Current-Mode SWR 150

References 169

4 Ripple-Based Control Technique Part I 170

4.1 Basic Topology of Ripple-Based Control 171

4.1.1 Hysteretic Control 173

4.1.2 On-Time Control 176

4.1.3 Off-Time Control 179

4.1.4 Constant Frequency with Peak Voltage Control and Constant Frequency with Valley Voltage Control 182

4.1.5 Summary of Topology of Ripple-Based Control 183

4.2 Stability Criterion of On-Time Controlled Buck Converter 185

4.2.1 Derivation of the Stability Criterion 185

4.2.2 Selection of Output Capacitor 197

4.3 Design Techniques When Using MLCC with a Small Value of RESR 201

4.3.1 Use of Additional Ramp Signal 202

4.3.2 Use of Additional Current Feedback Path 204

4.3.3 Comparison of On-Time Control with an Additional Current Feedback Path 254

4.3.4 Ripple-Reshaping Technique to Compensate a Small Value of RESR 256

4.3.5 Experimental Result of Ripple-Reshaped Function 262

References 269

5 Ripple-Based Control Technique Part II 270

5.1 Design Techniques for Enhancing Voltage Regulation Performance 270

5.1.1 Accuracy in DC Voltage Regulation 270

5.1.2 V2 Structure for Ripple-Based Control 271

5.1.3 V2 On-Time Control with an Additional Ramp or Current Feedback Path 275

5.1.4 Compensator for V2 Structure with Small RESR 277

5.1.5 Ripple-Based Control with Quadratic Differential and Integration Technique if Small RESR is Used 283

5.1.6 Robust Ripple Regulator (R3) 294

5.2 Analysis of Switching Frequency Variation to Reduce Electromagnetic Interference 297

5.2.1 Improvement of Noise Immunity of Feedback Signal 298

5.2.2 Bypassing Path to Filter the High-Frequency Noise of the Feedback Signal 299

5.2.3 Technique of PLL Modulator 302

5.2.4 Full Analysis of Frequency Variation under Different vIN, vOUT, and iLoad 304

5.2.5 Adaptive On-Time Controller for Pseudo-Constant fSW 313

5.3 Optimum On-Time Controller for Pseudo-Constant fSW 321

5.3.1 Algorithm for Optimum On-Time Control 322

5.3.2 Type-I Optimum On-Time Controller with Equivalent VIN and VOUT,eq 323

5.3.3 Type-II Optimum On-Time Controller with Equivalent VDUTY 331

5.3.4 Frequency Clamper 333

5.3.5 Comparison of Different On-Time Controllers 333

5.3.6 Simulation Result of Optimum On-Time Controller 335

5.3.7 Experimental Result of Optimum On-Time Controller 335

References 343

6 Single-Inductor Multiple-Output (SIMO) Converter 345

6.1 Basic Topology of SIMO Converters 345

6.1.1 Architecture 345

6.1.2 Cross Regulation 347

6.2 Applications of SIMO Converters 348

6.2.1 System-on-Chip 348

6.2.2 Portable Electronics Systems 350

6.3 Design Guidelines of SIMO Converters 351

6.3.1 Energy Delivery Paths 351

6.3.2 Classifications of Control Methods 359

6.3.3 Design Goals 363

6.4 SIMO Converter Techniques for Soc 364

6.4.1 Superposition Theorem in Inductor Current Control 364

6.4.2 Dual-Mode Energy Delivery Methodology 366

6.4.3 Energy-Mode Transition 367

6.4.4 Automatic Energy Bypass 371

6.4.5 Elimination of Transient Cross Regulation 372

6.4.6 Circuit Implementations 376

6.4.7 Experimental Results 387

6.5 SIMO Converter Techniques for Tablets 397

6.5.1 Output Independent Gate Drive Control in SIMO Converter 397

6.5.2 CCM/GM Relative Skip Energy Control in SIMO Converter 405

6.5.3 Bidirectional Dynamic Slope Compensation in SIMO Converter 415

6.5.4 Circuit Implementations 420

6.5.5 Experimental Results 427

References 441

7 Switching-Based Battery Charger 443

7.1 Introduction 443

7.1.1 Pure Charge State 447

7.1.2 Direct Supply State 448

7.1.3 Plug Off State 448

7.1.4 CAS State 448

7.2 Small Signal Analysis of Switching-Based Battery Charger 449

7.3 Closed-Loop Equivalent Model 454

7.4 Simulation with PSIM 461

7.5 Turbo-boost Charger 465

7.6 Influence of Built-In Resistance in the Charger System 470

7.7 Design Example: Continuous Built-In Resistance Detection 472

7.7.1 CBIRD Operation 473

7.7.2 CBIRD Circuit Implementation 476

7.7.3 Experimental Results 480

References 482

8 Energy-Harvesting Systems 483

8.1 Introduction to Energy-Harvesting Systems 483

8.2 Energy-Harvesting Sources 486

8.2.1 Vibration Electromagnetic Transducers 487

8.2.2 Piezoelectric Generator 490

8.2.3 Electrostatic Energy Generator 491

8.2.4 Wind-Powered Energy Generator 492

8.2.5 Thermoelectric Generator 494

8.2.6 Solar Cells 496

8.2.7 Magnetic Coil 498

8.2.8 RF/Wireless 501

8.3 Energy-Harvesting Circuits 502

8.3.1 Basic Concept of Energy-Harvesting Circuits 502

8.3.2 AC Source Energy-Harvesting Circuits 505

8.3.3 DC-Source Energy-Harvesting Circuits 511

8.4 Maximum Power Point Tracking 514

8.4.1 Basic Concept of Maximum Power Point Tracking 514

8.4.2 Impedance Matching 515

8.4.3 Resistor Emulation 516

8.4.4 MPPT Method 518

References 523

Index 527

 

商品描述(中文翻譯)

內容簡介

本書以能源需求驅使科學家尋求更環保的電力管理方法為前提,因此高度整合的電源控制IC(集成電路)對於進一步降低功耗的需求日益增加。

* 為IC設計師提供及時且全面的參考指南,以應對日益普及的集成低功耗管理需求
* 包含新主題,如LED照明、快速瞬態響應、DVS跟踪及先進技術節點的設計
* 主要作者(陳)是電源管理IC設計領域的活躍且知名的貢獻者,擁有豐富的行業經驗
* 附屬網站包含書中插圖的簡報檔案、講義、模擬電路、解決方案手冊、教學手冊及程式下載

章節目錄

About the Author xii

Preface xiii

Acknowledgments xv

1 介紹 1

1.1 摩爾定律 1

1.2 技術過程影響:從0.5微米到28納米的電源管理IC 1

1.2.1 MOSFET結構 1

1.2.2 縮放效應 7

1.2.3 漏電功耗 9

1.3 先進技術產品中電源管理IC的挑戰 14

1.3.1 多閾值技術 14

1.3.2 性能增強器 15

1.3.3 佈局依賴的鄰近效應 19

1.3.4 對電路設計的影響 20

1.4 電源管理模組中的基本定義原則 22

1.4.1 載荷調節 22

1.4.2 瞬態電壓變化 23

1.4.3 導通損耗和開關損耗 24

1.4.4 功率轉換效率 25

參考文獻 25

2 低壓差(LDO)穩壓器的設計 28

2.1 基本LDO架構 29

2.1.1 通過元件的類型 31

2.2 補償技巧 34

2.2.1 極點分佈 34

2.2.2 零點分佈和右半平面(RHP)零點 40

2.3 LDO穩壓器的設計考量 42

2.3.1 壓降電壓 43

2.3.2 效率 44

2.3.3 線性/負載調節 45

2.3.4 突然負載電流變化引起的瞬態輸出電壓變化 46

2.4 類比LDO穩壓器 50

2.4.1 主導極補償的特性 50

2.4.2 無電容結構的特性 56

2.4.3 低電壓無電容LDO穩壓器的設計 62

2.4.4 通過多級無電容LDO穩壓器中的電流反饋補償(CFC)技術來緩解最小負載電流限制 66

2.4.5 具有前饋路徑和動態增益調整(DGA)的多級LDO穩壓器 75

2.5 LDO穩壓器的設計指導 79

2.5.1 模擬提示和分析 81

2.5.2 AC分析模擬中打破迴路的技術 82

2.5.3 具有主導極補償的LDO穩壓器模擬結果示例 85

2.6 數位LDO(D-LDO)設計 93

2.6.1 基本D-LDO 94

2.6.2 具有格狀非同步自定時控制的D-LDO 96

2.6.3 動態電壓調整(DVS) 100

2.7 具有類比DVS技術的可切換數位/類比LDO(D/A-LDO)穩壓器 110

2.7.1 ADVS技術 110

2.7.2 可切換D/A-LDO穩壓器 113

參考文獻 120

3 開關電源穩壓器的設計 122

3.1 基本概念 122

3.2 控制方法和操作原理概述 125

3.3 SWR中的小信號建模和補償技術 131

3.3.1 電壓模式SWR的小信號建模 131

3.3.2 閉環電壓模式SWR的小信號建模 135

3.3.3 電流模式SWR的小信號建模 150

參考文獻 169

4 基於波紋的控制技術 第一部分 170

4.1 基於波紋控制的基本拓撲 171

4.1.1 環滯控制 173

4.1.2 開啟時間控制 176

4.1.3 關閉時間控制 179

4.1.4 具有峰值電壓控制的恆定頻率和具有谷值電壓控制的恆定頻率 182

4.1.5 基於波紋控制的拓撲總結 183

4.2 開啟時間控制的降壓轉換器的穩定性標準 185

4.2.1 穩定性標準的推導 185

4.2.2 輸出電容的選擇 197

4.3 使用小值RESR的MLCC時的設計技術 201

4.3.1 使用額外的斜坡信號 202

4.3.2 使用額外的電流反饋路徑 204

4.3.3 開啟時間控制與額外電流反饋路徑的比較 254

4.3.4 波紋重塑技術以補償小值RESR 256

4.3.5 波紋重塑函數的實驗結果 262

參考文獻 269

5 基於波紋的控制技術 第二部分 270

5.1 增強電壓調節性能的設計技術 270

5.1.1 直流電壓調節的準確性 270

5.1.2 基於波紋控制的V2結構 271

5.1.3 具有額外斜坡或電流反饋路徑的V2開啟時間控制 275

5.1.4 具有小RESR的V2結構的補償器 277

5.1.5 如果使用小RESR,則基於波紋控制的二次微分和積分技術 283

5.1.6 穩健波紋穩壓器(R3) 294

5.2 變化開關頻率以減少電磁干擾的分析 297

5.2.1 改善反饋信號的噪聲免疫性 298

5.2.2 繞過路徑以過濾反饋信號的高頻噪聲 299

5.2.3 PLL調製器的技術 302

5.2.4 在不同vIN、vOUT和iLoad下的頻率變化的全面分析 304

5.2.5 用於偽恆定fSW的自適應開啟時間控制器 313

5.3 用於偽恆定fSW的最佳開啟時間控制器 321

5.3.1 最佳開啟時間控制的演算法 322

5.3.2 具有等效VIN和VOUT,eq的Type-I最佳開啟時間控制器 323

5.3.3 具有等效VDUTY的Type-II最佳開啟時間控制器 331

5.3.4 頻率夾緊器 333

5.3.5 不同開啟時間控制器的比較 333

5.3.6 最佳開啟時間控制器的模擬結果 335

5.3.7 最佳開啟時間控制器的實驗結果 335

參考文獻 343

6 單電感多輸出(SIMO)轉換器 345

6.1 SIMO轉換器的基本拓撲 345

6.1.1 架構 345

6.1.2 交叉調節 347

6.2 SIMO轉換器的應用 348

6.2.1 系統單晶片 348

6.2.2 便攜式電子系統 350

6.3 SIMO轉換器的設計指導 351

6.3.1 能量傳遞路徑 351

6.3.2 控制方法的分類 359

6.3.3 設計目標 363

6.4 用於SoC的SIMO轉換器技術 364

6.4.1 在電感電流控制中的超位置定理 364

6.4.2 雙模式能量傳遞方法 366

6.4.3 能量模式轉換 367

6.4.4 自動能量旁路 371

6.4.5 消除瞬態交叉調節 372

6.4.6 電路實現 376

6.4.7 實驗結果 387

6.5 用於平板電腦的SIMO轉換器技術 397

6.5.1 SIMO轉換器中的輸出獨立閘驅動控制 397

6.5.2 SIMO轉換器中的CCM/GM相對跳過能量控制 405

6.5.3 SIMO轉換器中的雙向動態斜率補償 415

6.5.4 電路實現 420

6.5.5 實驗結果 427

參考文獻 441

7 基於開關的電池充電器 443

7.1 介紹 443

7.1.1 純充電狀態 447

7.1.2 直接供電狀態 448

7.1.3 拔掉狀態 448

7.1.4 CAS狀態 448

7.2 基於開關的電池充電器的小信號分析 449

7.3 閉環等效模型 454

7.4 使用PSIM的模擬 461

7.5 渦輪增壓充電器 465

7.6 充電系統中內建電阻的影響 470

7.7 設計示例:連續內建電阻檢測 472

7.7.1 CBIRD操作 473

7.7.2 CBIRD電路實現 476

7.7.3 實驗結果 480

參考文獻 482

8 能量收集系統 483

8.1 能量收集系統介紹 483

8.2 能量收集來源 486

8.2.1 振動電磁傳感器 487

8.2.2 壓電發電機 490

8.2.3 靜電能量發電機 491

8.2.4 風力發電機 492

8.2.5 熱電發電機 494

8.2.6 太陽能電池 496

8.2.7 磁圈 498

8.2.8 RF/無線 501

8.3 能量收集電路 502

8.3.1 能量收集電路的基本概念 502

8.3.2 交流源能量收集電路 505

8.3.3 直流源能量收集電路 511

8.4 最大功率點追蹤 514

8.4.1 最大功率點追蹤的基本概念 514

8.4.2 阻抗匹配 515

8.4.3 電阻模擬 516

8.4.4 MPPT方法 518

參考文獻 523

索引 527