Distributed Generation: Induction and Permanent Magnet Generators
暫譯: 分散式發電:感應發電機與永磁發電機

Loi Lei Lai, Tze Fun Chan

  • 出版商: Wiley
  • 出版日期: 2008-01-01
  • 售價: $4,810
  • 貴賓價: 9.5$4,570
  • 語言: 英文
  • 頁數: 262
  • 裝訂: Hardcover
  • ISBN: 0470062088
  • ISBN-13: 9780470062081
  • 海外代購書籍(需單獨結帳)

商品描述

Description 

Distributed power generation is a technology that could help to enable efficient, renewable energy production both in the developed and developing world. It includes all use of small electric power generators, whether located on the utility system, at the site of a utility customer, or at an isolated site not connected to the power grid. Induction generator (IG) is the most commonly used and cheapest technology, compatible with renewable energy resources. Permanent magnet (PM) generators have traditionally been avoided due to high fabrication costs; however, compared with IGs they are more reliable and productive.

Distributed Generation thoroughly examines the principles, possibilities and limitations of creating energy with both IGs and PM generators. It takes an electrical engineering approach in the analysis and testing of these generators, and includes diagrams and extensive case study examples to better demonstrate how the integration of energy sources can be accomplished. The book also provides the practical tools needed to model and implement new techniques for generating energy through isolated or grid-connected systems.

Besides a chapter introducing the technical, economic and environmental impacts of distributed generation, this book includes: 

  • an examination of various phase-balancing schemes for a three-phase IG operating on a single-phase power system;
  • a coupled circuit 2-D finite element analysis of a grid-connected IG, with Steinmetz connection;
  • a study of self-excited induction generator (SEIG) schemes for autonomous power systems, and the voltage and frequency control of SEIG with a slip-ring machine (SESRIG);
  • a report on a PM synchronous generator with inset rotor for achieving a reduced voltage regulation when supplying an autonomous power system, and an analysis of its performance using a two-axis model and finite element method;
  • experimental work on various IG and SEIG schemes.

This book is a must-read for engineers, consultants, regulators, and environmentalists involved in energy production and delivery, helping them to evaluate renewable energy sources and to integrate these into an efficient energy delivery system. It is also a superior reference for undergraduates and postgraduates. Designers, operators, and planners will appreciate its unique contribution to the literature in this field.


Table of Contents

Foreword.

Preface.

Acknowledgements.

About the Authors.

1. Distributed Generation.

1.1 Introduction.

1.2 Reasons for DG.

1.3 Technical Impacts of DG.

1.3.1 DG Technologies.

1.3.2 Thermal Issues.

1.3.3 Voltage Profile Issues.

1.3.4 Fault-Level Contributions.

1.3.5 Harmonics and Interactions with Loads.

1.3.6 Interactions Between Generating Units.

1.3.7 Protection Issues.

1.4 Economic Impact of DG.

1.5 Barriers to DG Development.

1.6 Renewable Sources of Energy.

1.7 Renewable Energy Economics.

1.8 Interconnection.

1.8.1 Interconnection Standardization.

1.8.2 Rate Design.

1.9 Recommendations and Guidelines for DG Planning.

1.10 Summary.

References.

2. Generators.

2.1 Introduction.

2.2 Synchronous Generator.

2.2.1 Permanent Magnet Materials.

2.2.2 Permanent Magnet Generator.

2.3 Induction Generator.

2.3.1 Three-Phase IGs and SEIGs.

2.3.2 Single-Phase IGs and SEIGs.

2.4 Doubly Fed Induction Generator.

2.4.1 Operation.

2.4.2 Recent Work.

2.5 Summary.

References.

3. Three-Phase IG Operating on a Single-Phase Power System.

3.1 Introduction.

3.2 Phase Balancing Using Passive Circuit Elements.

3.2.1 Analysis of IG with Phase Converters.

3.2.2 Phase-Balancing Schemes.

3.2.3 Case Study.

3.2.4 System Power Factor.

3.2.5 Power and Efficiency.

3.2.6 Operation with Fixed Phase Converters.

3.2.7 Summary.

3.3 Phase Balancing using the Smith Connection.

3.3.1 Three-Phase IG with the Smith Connection.

3.3.2 Performance Analysis.

3.3.3 Balanced Operation.

3.3.4 Case Study.

3.3.5 Effect of Phase-Balancing Capacitances.

3.3.6 Dual-Mode Operation.

3.3.7 Summary.

3.4 Microcontroller-Based Multi-Mode Control of SMIG.

3.4.1 Phase Voltage Consideration.

3.4.2 Control System.

3.4.3 Practical Implementation.

3.4.4 Experimental Results.

3.4.5 Summary.

3.5 Phase-Balancing using a Line Current Injection Method.

3.5.1 Circuit Connection and Operating Principle.

3.5.2 Performance Analysis.

3.5.3 Balanced Operation.

3.5.4 Case Study.

3.5.5 Summary.

References.

4. Finite Element Analysis of Grid-Connected IG with the Steinmetz Connection.

4.1 Introduction.

4.2 Steinmetz Connection and Symmetrical Components Analysis.

4.3 Machine Model.

4.4 Finite Element Analysis.

4.4.1 Basic Field Equations.

4.4.2 Stator Circuit Equations.

4.4.3 Stator EMFs.

4.4.4 Rotor Circuit Model.

4.4.5 Comments on the Proposed Method.

4.5 Computational Aspects.

4.6 Case Study.

4.7 Summary.

References.

5. SEIGs for Autonomous Power Systems.

5.1 Introduction.

5.2 Three-Phase SEIG with the Steinmetz Connection.

5.2.1 Circuit Connection and Analysis.

5.2.2 Solution Technique.

5.2.3 Capacitance Requirement.

5.2.4 Computed and Experimental Results.

5.2.5 Capacitance Requirement on Load.

5.2.6 Summary.

5.3 SEIG with Asymmetrically Connected Impedances and Excitation Capacitances.

5.3.1 Circuit Model.

5.3.2 Performance Analysis.

5.3.3 Computed and Experimental Results.

5.3.4 Modified Steinmetz Connection.

5.3.5 Simplified Steinmetz Connection.

5.3.6 Summary.

5.4 Self-regulated SEIG for Single-Phase Loads.

5.4.1 Circuit Connection and Analysis.

5.4.2 Effect of Series Compensation Capacitance.

5.4.3 Experimental Results and Discussion.

5.4.4 Effect of Load Power Factor.

5.4.5 Summary.

5.5 SEIG with the Smith Connection.

5.5.1 Circuit Connection and Operating Principle.

5.5.2 Performance Analysis.

5.5.3 Balanced Operation.

5.5.4 Results and Discussion.

5.5.5 Summary.

References.

6. Voltage and Frequency Control of SEIG with Slip-Ring Rotor.

6.1 Introduction.

6.2 Performance Analysis of SESRIG.

6.3 Frequency and Voltage Control.

6.4 Control with Variable Stator Load.

6.5 Practical Implementation.

6.5.1 Chopper-Controlled Rotor External Resistance.

6.5.2 Closed-Loop Control.

6.5.3 Tuning of PI Controller.

6.5.4 Dynamic Response.

6.6 Summary.

References.

7. PMSGs For Autonomous Power Systems.

7.1 Introduction.

7.2 Principle and Construction of PMSG with Inset Rotor.

7.3 Analysis for Unity-Power-Factor Loads.

7.3.1 Analysis Using the Two-Axis Model.

7.3.2 Design Considerations.

7.3.3 Computed Results.

7.3.4 Experimental Results.

7.3.5 Summary.

7.4 A Comprehensive Analysis.

7.4.1 Basic Equations and Analysis.

7.4.2 Conditions for Zero Voltage Regulation.

7.4.3 Extremum Points in the Load Characteristic.

7.4.4 Power-Load Angle Relationship.

7.4.5 The Saturated Two-Axis Model.

7.4.6 Summary.

7.5 Computation of Synchronous Reactances.

7.5.1 Analysis Based on FEM.

7.5.2 Computation of X<sub>d</sub> and X<sub>q</sub>.

7.5.3 Computed Results.

7.5.4 Summary.

7.6 Analysis using Time-Stepping 2-D FEM.

7.6.1 Machine Model and Assumptions.

7.6.2 Coupled Circuit and Field Analysis.

7.6.3 Magnetic Saturation Consideration.

7.6.4 Computed Results.

7.6.5 Experimental Verification.

7.6.6 Summary.

References.

8. Conclusions.

8.1 Accomplishments of the Book.

8.2 Future Work.

Reference.

Appendix A. Analysis for IG and SEIG.

A.1 Symmetrical Components Equations for IG.

A.2 Positive-Sequence and Negative-Sequence Circuits of IG.

A.3 V<sub>p</sub> and V<sub>n</sub> for IG with Dual-Phase Converters.

A.4 Derivation of Angular Relationship.

A.5 Input Impedance of SEIG with the Steinmetz Connection.

References.

Appendix B. The Method of Hooke and Jeeves.

Reference.

Appendix C. A Note on the Finite Element Method [1] .

C.1 Energy Functional and Discretization.

C.2 Shape Functions.

C.3 Functional Minimization and Global Assembly.

Reference.

Appendix D. Technical Data of Experimental Machines.

D.1 Machine IG1.

D.2 Machine IG2.

D.3 Prototype PMSG with Inset Rotor.

Index.

商品描述(中文翻譯)

描述

分散式發電是一項技術,能夠促進發達國家和發展中國家的高效可再生能源生產。它包括所有小型電力發電機的使用,無論是位於公用事業系統中、用戶現場,還是與電網不相連的孤立地點。感應發電機(Induction Generator, IG)是最常用且最便宜的技術,與可再生能源資源相容。永久磁鐵(Permanent Magnet, PM)發電機因製造成本高而傳統上被避免使用;然而,與IG相比,它們更可靠且生產力更高。

《分散式發電》徹底檢視了使用IG和PM發電機創造能源的原則、可能性和限制。該書採用電氣工程的方法分析和測試這些發電機,並包含圖表和廣泛的案例研究示例,以更好地展示如何實現能源來源的整合。該書還提供了建模和實施新技術所需的實用工具,以通過孤立或與電網連接的系統生成能源。

除了介紹分散式發電的技術、經濟和環境影響的章節外,本書還包括:
- 對於在單相電力系統上運行的三相IG的各種相平衡方案的檢查;
- 一個與Steinmetz連接的網絡連接IG的耦合電路2-D有限元分析;
- 自激感應發電機(Self-Excited Induction Generator, SEIG)方案在自主電力系統中的研究,以及使用滑環機(Slip-Ring Machine, SESRIG)進行的SEIG的電壓和頻率控制;
- 一個具有內嵌轉子的PM同步發電機的報告,以實現為自主電力系統供電時降低電壓調節,並使用雙軸模型和有限元方法分析其性能;
- 對各種IG和SEIG方案的實驗工作。

本書是從事能源生產和交付的工程師、顧問、監管機構和環保人士的必讀書籍,幫助他們評估可再生能源來源並將其整合到高效的能源交付系統中。它也是本科生和研究生的優秀參考資料。設計師、操作員和規劃者將會欣賞其在該領域文獻中的獨特貢獻。

目錄

前言
序言
致謝
關於作者
1. 分散式發電
1.1 介紹
1.2 分散式發電的原因
1.3 分散式發電的技術影響
1.3.1 分散式發電技術
1.3.2 熱問題
1.3.3 電壓輪廓問題
1.3.4 故障電平貢獻
1.3.5 諧波與負載的相互作用
1.3.6 發電單元之間的相互作用
1.3.7 保護問題
1.4 分散式發電的經濟影響
1.5 分散式發電發展的障礙
1.6 可再生能源來源
1.7 可再生能源經濟學
1.8 互連
1.8.1 互連標準化
1.8.2 費率設計
1.9 分散式發電規劃的建議和指導方針
1.10 總結
參考文獻
2. 發電機
2.1 介紹
2.2 同步發電機
2.2.1 永久磁鐵材料
2.2.2 永久磁鐵發電機
2.3 感應發電機
2.3.1 三相IG和SEIG
2.3.2 單相IG和SEIG
2.4 雙饋感應發電機
2.4.1 操作
2.4.2 最近的工作
2.5 總結
參考文獻
3. 在單相電力系統上運行的三相IG
3.1 介紹
3.2 使用被動電路元件的相平衡
3.2.1 具有相變換器的IG分析
3.2.2 相平衡方案
3.2.3 案例研究
3.2.4 系統功率因數
3.2.5 功率和效率
3.2.6 使用固定相變換器的操作
3.2.7 總結
3.3 使用Smith連接的相平衡
3.3.1 具有Smith連接的三相IG
3.3.2 性能分析
3.3.3 平衡操作
3.3.4 案例研究
3.3.5 相平衡電容的影響
3.3.6 雙模式操作
3.3.7 總結
3.4 基於微控制器的SMIG多模式控制
3.4.1 相電壓考量
3.4.2 控制系統
3.4.3 實際實施
3.4.4 實驗結果
3.4.5 總結
3.5 使用線電流注入法的相平衡
3.5.1 電路連接和操作原理
3.5.2 性能分析
3.5.3 平衡操作
3.5.4 案例研究
3.5.5 總結
參考文獻
4. 具有Steinmetz連接的網絡連接IG的有限元分析
4.1 介紹
4.2 Steinmetz連接和對稱分量分析
4.3 機器模型
4.4 有限元分析
4.4.1 基本場方程
4.4.2 定子電路方程
4.4.3 定子電動勢
4.4.4 轉子電路模型
4.4.5 對所提方法的評論
4.5 計算方面
4.6 案例研究
4.7 總結
參考文獻
5. 自主電力系統的SEIG
5.1 介紹
5.2 具有Steinmetz連接的三相SEIG
5.2.1 電路連接和分析
5.2.2 解決技術
5.2.3 電容要求
5.2.4 計算和實驗結果
5.2.5 負載上的電容要求
5.2.6 總結
5.3 具有不對稱連接阻抗和激勵電容的SEIG
5.3.1 電路模型
5.3.2 性能分析
5.3.3 計算和實驗結果
5.3.4 修改的Steinmetz連接
5.3.5 簡化的Steinmetz連接
5.3.6 總結
5.4 自我調節的SEIG用於單相負載
5.4.1 電路連接和分析
5.4.2 串聯補償電容的影響
5.4.3 實驗結果和討論
5.4.4 負載功率因數的影響
5.4.5 總結
5.5 具有Smith連接的SEIG
5.5.1 電路連接和操作原理
5.5.2 性能分析
5.5.3 平衡操作
5.5.4 結果和討論
5.5.5 總結
參考文獻
6. 具有滑環轉子的SEIG的電壓和頻率控制
6.1 介紹
6.2 SESRIG的性能分析
6.3 頻率和電壓控制
6.4 變定子負載的控制
6.5 實際實施
6.5.1 切換控制的轉子外部電阻
6.5.2 閉環控制
6.5.3 PI控制器的調整
6.5.4 動態響應
6.6 總結
參考文獻
7. 自主電力系統的PMSG
7.1 介紹
7.2 具有內嵌轉子的PMSG的原理和結構
7.3 單位功率因數負載的分析
7.3.1 使用雙軸模型的分析
7.3.2 設計考量
7.3.3 計算結果
7.3.4 實驗結果
7.3.5 總結
7.4 綜合分析
7.4.1 基本方程和分析
7.4.2 零電壓調節的條件
7.4.3 負載特性中的極值點
7.4.4 功率-負載角關係
7.4.5 飽和雙軸模型
7.4.6 總結
7.5 同步反應的計算
7.5.1 基於有限元法的分析
7.5.2 X_d和X_q的計算