Machine Learning: Hands-On for Developers and Technical Professionals
Jason Bell
- 出版商: Wiley
- 出版日期: 2014-11-03
- 售價: $1,650
- 貴賓價: 9.5 折 $1,568
- 語言: 英文
- 頁數: 408
- 裝訂: Paperback
- ISBN: 1118889061
- ISBN-13: 9781118889060
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習:實用技術指南 (簡中版)
立即出貨
買這商品的人也買了...
-
$880$695 -
$550$468 -
$3,500$3,325 -
$880$695 -
$620$527 -
$1,292Speech and Language Processing, 2/e (IE-Paperback)
-
$1,850$1,758 -
$400$380 -
$680$578 -
$360$252 -
$780$515 -
$350$231 -
$420$277 -
$520$343 -
$560$370 -
$450$297 -
$403資料探勘:實用機器學習工具與技術, 3/e (Data Mining: Practical Machine Learning Tools and Techniques, 3/e)
-
$550$468 -
$780$616 -
$360$238 -
$480$317 -
$900$900 -
$2,275$2,161 -
$580$458 -
$580$458
相關主題
商品描述
Dig deep into the data with a hands-on guide to machine learning Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
商品描述(中文翻譯)
深入挖掘數據,透過實踐指南學習機器學習
《機器學習:開發者和技術專業人員的實踐指南》提供了開發者和技術專業人員使用的最常見機器學習技術的實踐指導和完整編碼的工作示例。本書對每種機器學習變體進行了詳細解析,解釋了其工作原理以及在特定行業中的應用,讓讀者能夠在跟隨示例的同時將這些技術應用到自己的工作中。機器學習的核心原則之一是對數據準備的重視,全面探索各種學習算法的類型,說明了合適的工具如何幫助開發者從現有數據中提取信息和洞察力。本書還包含完整的教學材料,方便在課堂上使用,使其成為學生和專業人士的參考資料。機器學習的核心是一種基於數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要對機器學習有一定的了解,它根據從訓練數據中學到的已知特性進行預測。《機器學習》是一本易於理解、全面的指南,適合非數學專業人士,提供清晰的指導,讓讀者能夠:學習機器學習的語言,包括Hadoop、Mahout和Weka;了解決策樹、貝葉斯網絡和人工神經網絡;實施關聯規則、實時和批量學習;制定安全、有效和高效的機器學習戰略計劃。通過學習構建一個能夠從數據中學習的系統,讀者可以在各個行業中提高自己的效用。機器學習是深入挖掘數據分析和可視化的核心,隨著企業發現現有數據中的寶藏,對此需求越來越大。對於從事數據科學的技術專業人員,《機器學習:開發者和技術專業人員的實踐指南》提供了深入挖掘所需的技能和技術。