Statistical Data Analytics (Hardcvoer)
暫譯: 統計數據分析(精裝版)

Walter W. Piegorsch

  • 出版商: Wiley
  • 出版日期: 2015-08-17
  • 售價: $1,529
  • 語言: 英文
  • 頁數: 464
  • 裝訂: Hardcover
  • ISBN: 111861965X
  • ISBN-13: 9781118619650
  • 相關分類: Data Science
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

相關主題

商品描述

<內容簡介>

  Focuses on methods critically used in data mining and statistical informatics. Coherently describes the methods at an introductory level, with extensions to selected intermediate and advanced techniques.

  Provides informative, technical details for the highlighted methods.

  Employs the open-source R language as the computational vehicle – along with its burgeoning collection of online packages – to illustrate many of the analyses contained in the book.

  Concludes each chapter with a range of interesting and challenging homework exercises using actual data from a variety of informatic application areas.

This book will appeal as a classroom or training text to intermediate and advanced undergraduates, and to beginning graduate students, with sufficient background in calculus and matrix algebra. It will also serve as a source-book on the foundations of statistical informatics and data analytics to practitioners who regularly apply statistical learning to their modern data.

A comprehensive introduction to statistical methods for data mining and knowledge discovery.

Applications of data mining and ‘big data’ increasingly take center stage in our modern, knowledge-driven society, supported by advances in computing power, automated data acquisition, social media development and interactive, linkable internet software. This book presents a coherent, technical introduction to modern statistical learning and analytics, starting from the core foundations of statistics and probability. It includes an overview of probability and statistical distributions, basics of data manipulation and visualization, and the central components of standard statistical inferences. The majority of the text extends beyond these introductory topics, however, to supervised learning in linear regression, generalized linear models, and classification analytics. Finally, unsupervised learning via dimension reduction, cluster analysis, and market basket analysis are introduced.

Extensive examples using actual data (with sample R programming code) are provided, illustrating diverse informatic sources in genomics, biomedicine, ecological remote sensing, astronomy, socioeconomics, marketing, advertising and finance, among many others.

為了多益考高分,狂背單字、死背句型,
卻一考完就忘光光?

本書教你將苦學多時的多益,落實在不同的職場階段,

讓你隨時對照應用、輕鬆應對。


善用所學,才增強職場英語實戰力!


套入5大職場情境,強化英文實際運用,邊做邊學不會忘。
矯正職場菜英文,提升個人英文魅力。
補充現在多益熱門單字與文法,讓你在工作中還能學習新知識。
依照職務工作事項分類,可做為英文工具書,工作中現學現賣。
增加補充時事應用,一字多用,同時間思考多種可能。

本書以五大職場必經階段來劃分篇章:菜鳥面試、便利貼職員、獨當一面、小主管、大主管。每個階段都有精彩、仿真情境的案例,提供有機會使用到的單字、文法、片語、以及情境對話,,讓你邊看邊拾回多益能力,扎扎實實地用用在工作中的各個面向。

更重要的是,最後還有搭配多益試題,讓你學會、還能應用,自然而然將多益的聽、說、讀、寫帶入職場中。


本書特色
1.
多益
職場通
台灣考生總是狂背多益單字、死背句型,考完就忘光光!本書提供實際情境案例,讓想學好商用英文的人能夠將職場英文落實應用。

2.
一本好的英文工具書

本書內容完全針對職場情境量身打造,諸如英文信件回覆、接聽電話、洽談合約……等等,讓你隨時都能對照應用、輕鬆應對。
<章節目錄>

Part I Background: Introductory Statistical Analytics
1 Data analytics and data mining
2 Basic probability and statistical distributions
3 Data manipulation
4 Data visualization and statistical graphics
5 Statistical inference

Part II Statistical Learning and Data Analytics
6 Techniques for supervised learning: simple linear regression
7 Techniques for supervised learning: multiple linear regression
8 Supervised learning: generalized linear models
9 Supervised learning: classification
10 Techniques for unsupervised learning: dimension reduction
11 Techniques for unsupervised learning: clustering and association

A Matrix manipulation
B Brief introduction to R

商品描述(中文翻譯)

內容簡介

- 專注於數據挖掘和統計資訊學中關鍵使用的方法。以入門級的方式連貫地描述這些方法,並擴展至選定的中級和高級技術。

- 提供所強調方法的資訊性技術細節。

- 使用開源的 R 語言作為計算工具,並結合其不斷增長的在線套件,來說明書中包含的許多分析。

- 每章結尾提供一系列有趣且具挑戰性的作業練習,使用來自各種資訊應用領域的實際數據。

本書將吸引中級和高級本科生以及具備微積分和矩陣代數基礎的初級研究生作為課堂或訓練教材。它也將作為統計資訊學和數據分析基礎的資料來源,供定期將統計學習應用於現代數據的實務工作者使用。

這是一本全面介紹數據挖掘和知識發現的統計方法的書籍。

數據挖掘和「大數據」的應用在我們現代的知識驅動社會中越來越受到重視,這得益於計算能力的提升、自動數據獲取、社交媒體的發展以及互動式、可連結的互聯網軟體的進步。本書提供了一個連貫的技術介紹,涵蓋現代統計學習和分析,從統計學和概率的核心基礎開始。它包括概率和統計分佈的概述、數據操作和可視化的基礎知識,以及標準統計推斷的核心組成部分。然而,文本的大部分內容超越了這些入門主題,深入探討線性回歸的監督學習、廣義線性模型和分類分析。最後,介紹了通過降維、聚類分析和市場籃分析的非監督學習。

提供使用實際數據的廣泛範例(包含 R 程式碼範例),展示來自基因組學、生物醫學、生態遙感、天文學、社會經濟學、市場營銷、廣告和金融等多個領域的多樣資訊來源。

章節目錄

第一部分 背景:入門統計分析
1 數據分析與數據挖掘
2 基本概率與統計分佈
3 數據操作
4 數據可視化與統計圖形
5 統計推斷

第二部分 統計學習與數據分析
6 監督學習技術:簡單線性回歸
7 監督學習技術:多元線性回歸
8 監督學習:廣義線性模型
9 監督學習:分類
10 非監督學習技術:降維
11 非監督學習技術:聚類