Data Mining and Business Analytics with R (Hardcover)
暫譯: 使用 R 進行資料探勘與商業分析 (精裝版)

Johannes Ledolter

買這商品的人也買了...

商品描述

Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification.

Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents:

• A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools

• Illustrations of how to use the outlined concepts in real-world situations

• Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials

• Numerous exercises to help readers with computing skills and deepen their understanding of the material

Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.

商品描述(中文翻譯)

收集、分析和從大量數據中提取有價值的信息需要易於訪問、穩健的計算和分析工具。《使用 R 進行數據挖掘與商業分析》利用開源軟體 R 來分析、探索和簡化大型高維數據集。因此,讀者將獲得所需的指導,以建模和解釋複雜數據,並熟練於構建強大的預測和分類模型。

《使用 R 進行數據挖掘與商業分析》強調了基本概念和實用的計算技能,首先介紹標準線性回歸及其在統計建模中簡約性的重要性。本書涵蓋了重要主題,如基於懲罰的變數選擇(LASSO);邏輯回歸;回歸和分類樹;聚類;主成分分析和偏最小二乘法;以及文本和網絡數據的分析。此外,本書還提供:

• 對最有用的數據挖掘工具背後理論的徹底討論和廣泛演示

• 如何在現實情況中使用所述概念的示例

• 隨時可用的附加數據集和相關的 R 代碼,允許讀者將自己的分析應用於所討論的材料

• 許多練習題幫助讀者提高計算技能並加深對材料的理解

《使用 R 進行數據挖掘與商業分析》是針對數據挖掘和商業分析課程的優秀研究生級教科書。本書對於在金融、運營管理、市場營銷和信息科學領域收集和分析數據的從業者來說,也是一本有價值的參考書。

最後瀏覽商品 (20)