Multi-Agent Machine Learning: A Reinforcement Approach
H. M. Schwartz
- 出版商: Wiley
- 出版日期: 2014-08-11
- 售價: $3,600
- 貴賓價: 9.5 折 $3,420
- 語言: 英文
- 頁數: 256
- 裝訂: Hardcover
- ISBN: 111836208X
- ISBN-13: 9781118362082
-
相關分類:
Machine Learning
-
相關翻譯:
多智能體機器學習 : 強化學習方法 (Multi-Agent Machine Learning : A Reinforcement Approach) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,370$1,302 -
$4,040$3,838 -
$1,000$900 -
$648$616 -
$1,570$1,492 -
$580$383 -
$352多智能體機器學習 : 強化學習方法 (Multi-Agent Machine Learning : A Reinforcement Approach)
-
$1,810$1,720 -
$1,870$1,777 -
$474$450 -
$403$379 -
$408強化學習精要:核心算法與 TensorFlow 實現
-
$1,188Deep Reinforcement Learning Hands-On
-
$580$493 -
$650$585 -
$300$270 -
$520$411 -
$301特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$680$612 -
$880$695 -
$380$342 -
$580$458 -
$680$476 -
$690$345 -
$760$593
相關主題
商品描述
Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics.
• Framework for understanding a variety of methods and approaches in multi-agent machine learning.
• Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning
• Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering
商品描述(中文翻譯)
《多智能體機器學習:一種強化學習方法》是一個理解多智能體機器學習不同方法和途徑的框架。它還提供了對多智能體微分博弈的最新進展的全面覆蓋,並介紹了在博弈論和機器人領域的應用。
• 理解多智能體機器學習的各種方法和途徑的框架。
• 討論了強化學習的方法,如多智能體Q學習的多種形式。
• 適用於研究電機與電腦工程、計算機科學以及機械與航空航天工程的研究教授和研究生。