Combining Pattern Classifiers: Methods and Algorithms, 2/e (Hardcover)
暫譯: 結合模式分類器:方法與演算法,第二版(精裝本)
Ludmila I. Kuncheva
- 出版商: Wiley
- 出版日期: 2014-09-09
- 售價: $4,380
- 貴賓價: 9.5 折 $4,161
- 語言: 英文
- 頁數: 384
- 裝訂: Hardcover
- ISBN: 1118315235
- ISBN-13: 9781118315231
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
A unified, coherent treatment of current classifier ensemble methods, from fundamentals of pattern recognition to ensemble feature selection, now in its second edition
The art and science of combining pattern classifiers has flourished into a prolific discipline since the first edition of Combining Pattern Classifiers was published in 2004. Dr. Kuncheva has plucked from the rich landscape of recent classifier ensemble literature the topics, methods, and algorithms that will guide the reader toward a deeper understanding of the fundamentals, design, and applications of classifier ensemble methods.
Thoroughly updated, with MATLAB® code and practice data sets throughout, Combining Pattern Classifiers includes:
• Coverage of Bayes decision theory and experimental comparison of classifiers
• Essential ensemble methods such as Bagging, Random forest, AdaBoost, Random subspace, Rotation forest, Random oracle, and Error Correcting Output Code, among others
• Chapters on classifier selection, diversity, and ensemble feature selection
With firm grounding in the fundamentals of pattern recognition, and featuring more than 140 illustrations, Combining Pattern Classifiers, Second Edition is a valuable reference for postgraduate students, researchers, and practitioners in computing and engineering.
商品描述(中文翻譯)
統一且連貫地探討當前的分類器集成方法,從模式識別的基本原理到集成功能選擇,現已出版第二版。
自從2004年第一版《結合模式分類器》出版以來,結合模式分類器的藝術與科學已經發展成為一個繁榮的學科。Kuncheva博士從近期的分類器集成文獻中提取了主題、方法和演算法,將引導讀者深入理解分類器集成方法的基本原理、設計和應用。
本書經過全面更新,並在全書中包含MATLAB®代碼和實踐數據集,《結合模式分類器》包括:
• 貝葉斯決策理論的覆蓋及分類器的實驗比較
• 重要的集成方法,如Bagging、隨機森林(Random forest)、AdaBoost、隨機子空間(Random subspace)、旋轉森林(Rotation forest)、隨機神諭(Random oracle)和錯誤更正輸出碼(Error Correcting Output Code)等
• 有關分類器選擇、多樣性和集成功能選擇的章節
《結合模式分類器,第二版》在模式識別的基本原理上有堅實的基礎,並包含超過140幅插圖,是計算和工程領域的研究生、研究人員和實務工作者的重要參考資料。