Calculus Early Transcendentals (IE) (微積分早期超越函數 (IE))
Howard Anton, Irl C. Bivens, Stephen Davis
- 出版商: Wiley
- 出版日期: 2012-03-27
- 售價: $1,380
- 貴賓價: 9.8 折 $1,352
- 語言: 英文
- 頁數: 1320
- 裝訂: Paperback
- ISBN: 1118092406
- ISBN-13: 9781118092408
-
相關分類:
微積分 Calculus
下單後立即進貨 (約5~7天)
相關主題
商品描述
<內容簡介>
Calculus, Early Transcendentals, 10e continues to evolve to fulfill the needs of a changing market by providing flexible solutions to teaching and learning needs of all kinds. Calculus, Early Transcendentals, 10e excels in increasing student comprehension and conceptual understanding of the mathematics. The new edition retains the strengths of earlier editions: e.g., Anton's trademark clarity of exposition; sound mathematics; excellent exercises and examples; and appropriate level, while incorporating more skill and drill problems within WileyPLUS.
The seamless integration of Howard Anton’s Calculus: Early Transcendentals, 10e with WileyPLUS, a research-based, online environment for effective teaching and learning, continues Anton’s vision of building student confidence in mathematics because it takes the guesswork out of studying by providing them with a clear roadmap: what to do, how to do it, and whether they did it right.
<章節目錄>
0 BEFORE CALCULUS 1
0.1 Functions 1
0.2 New Functions from Old 15
0.3 Families of Functions 27
0.4 Inverse Functions; Inverse Trigonometric Functions 38
0.5 Exponential and Logarithmic Functions 52
1 LIMITS AND CONTINUITY 67
1.1 Limits (An Intuitive Approach) 67
1.2 Computing Limits 80
1.3 Limits at Infinity; End Behavior of a Function 89
1.4 Limits (Discussed More Rigorously) 100
1.5 Continuity 110
1.6 Continuity of Trigonometric, Exponential, and Inverse Functions 121
2 THE DERIVATIVE 131
2.1 Tangent Lines and Rates of Change 131
2.2 The Derivative Function 143
2.3 Introduction to Techniques of Differentiation 155
2.4 The Product and Quotient Rules 163
2.5 Derivatives of Trigonometric Functions 169
2.6 The Chain Rule 174
3 TOPICS IN DIFFERENTIATION 185
3.1 Implicit Differentiation 185
3.2 Derivatives of Logarithmic Functions 192
3.3 Derivatives of Exponential and Inverse Trigonometric Functions 197
3.4 Related Rates 204
3.5 Local Linear Approximation; Differentials 212
3.6 L’Ho^pital’s Rule; Indeterminate Forms 219
4 THE DERIVATIVE IN GRAPHING AND APPLICATIONS 232
4.1 Analysis of Functions I: Increase, Decrease, and Concavity 232
4.2 Analysis of Functions II: Relative Extrema; Graphing Polynomials 244
4.3 Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents 254
4.4 Absolute Maxima and Minima 266
4.5 Applied Maximum and Minimum Problems 274
4.6 Rectilinear Motion 288
4.7 Newton’s Method 296
4.8 Rolle’s Theorem; Mean-Value Theorem 302
5 INTEGRATION 316
5.1 An Overview of the Area Problem 316
5.2 The Indefinite Integral 322
5.3 Integration by Substitution 332
5.4 The Definition of Area as a Limit; Sigma Notation 340
5.5 The Definite Integral 353
5.6 The Fundamental Theorem of Calculus 362
5.7 Rectilinear Motion Revisited Using Integration 376
5.8 Average Value of a Function and its Applications 385
5.9 Evaluating Definite Integrals by Substitution 390
5.10 Logarithmic and Other Functions Defined by Integrals 396
6 APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY, SCIENCE, AND ENGINEERING 413
6.1 Area Between Two Curves 413
6.2 Volumes by Slicing; Disks and Washers 421
6.3 Volumes by Cylindrical Shells 432
6.4 Length of a Plane Curve 438
6.5 Area of a Surface of Revolution 444
6.6 Work 449
6.7 Moments, Centers of Gravity, and Centroids 458
6.8 Fluid Pressure and Force 467
6.9 Hyperbolic Functions and Hanging Cables 474
7 PRINCIPLES OF INTEGRAL EVALUATION 488
7.1 An Overview of Integration Methods 488
7.2 Integration by Parts 491
7.3 Integrating Trigonometric Functions 500
7.4 Trigonometric Substitutions 508
7.5 Integrating Rational Functions by Partial Fractions 514
7.6 Using Computer Algebra Systems and Tables of Integrals 523
7.7 Numerical Integration; Simpson’s Rule 533
7.8 Improper Integrals 547
8 MATHEMATICAL MODELING WITH DIFFERENTIAL EQUATIONS 561
8.1 Modeling with Differential Equations 561
8.2 Separation of Variables 568
8.3 Slope Fields; Euler’s Method 579
8.4 First-Order Differential Equations and Applications 586
9 INFINITE SERIES 596
9.1 Sequences 596
9.2 Monotone Sequences 607
9.3 Infinite Series 614
9.4 Convergence Tests 623
9.5 The Comparison, Ratio, and Root Tests 631
9.6 Alternating Series; Absolute and Conditional Convergence 638
9.7 Maclaurin and Taylor Polynomials 648
9.8 Maclaurin and Taylor Series; Power Series 659
9.9 Convergence of Taylor Series 668
9.10 Differentiating and Integrating Power Series; Modeling with Taylor Series 678
10 PARAMETRIC AND POLAR CURVES; CONIC SECTIONS 692
10.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves 692
10.2 Polar Coordinates 705
10.3 Tangent Lines, Arc Length, and Area for Polar Curves 719
10.4 Conic Sections 730
10.5 Rotation of Axes; Second-Degree Equations 748
10.6 Conic Sections in Polar Coordinates 754
11 THREE-DIMENSIONAL SPACE; VECTORS 767
11.1 Rectangular Coordinates in 3-Space; Spheres; Cylindrical Surfaces 767
11.2 Vectors 773
11.3 Dot Product; Projections 785
11.4 Cross Product 795
11.5 Parametric Equations of Lines 805
11.6 Planes in 3-Space 813
11.7 Quadric Surfaces 821
11.8 Cylindrical and Spherical Coordinates 832
12 VECTOR-VALUED FUNCTIONS 841
12.1 Introduction to Vector-Valued Functions 841
12.2 Calculus of Vector-Valued Functions 848
12.3 Change of Parameter; Arc Length 858
12.4 Unit Tangent, Normal, and Binormal Vectors 868
12.5 Curvature 873
12.6 Motion Along a Curve 882
12.7 Kepler’s Laws of Planetary Motion 895
13 PARTIAL DERIVATIVES 906
13.1 Functions of Two or More Variables 906
13.2 Limits and Continuity 917
13.3 Partial Derivatives 927
13.4 Differentiability, Differentials, and Local Linearity 940
13.5 The Chain Rule 949
13.6 Directional Derivatives and Gradients 960
13.7 Tangent Planes and Normal Vectors 971
13.8 Maxima and Minima of Functions of Two Variables 977
13.9 Lagrange Multipliers 989
14 MULTIPLE INTEGRALS 1000
14.1 Double Integrals 1000
14.2 Double Integrals over Nonrectangular Regions 1009
14.3 Double Integrals in Polar Coordinates 1018
14.4 Surface Area; Parametric Surfaces 1026
14.5 Triple Integrals 1039
14.6 Triple Integrals in Cylindrical and Spherical Coordinates 1048
14.7 Change of Variables in Multiple Integrals; Jacobians 1058
14.8 Centers of Gravity Using Multiple Integrals 1071
15 TOPICS IN VECTOR CALCULUS 1084
15.1 Vector Fields 1084
15.2 Line Integrals 1094
15.3 Independence of Path; Conservative Vector Fields 1111
15.4 Green’s Theorem 1122
15.5 Surface Integrals 1130
15.6 Applications of Surface Integrals; Flux 1138
15.7 The Divergence Theorem 1148
15.8 Stokes’ Theorem 1158
A APPENDICES
A GRAPHING FUNCTIONS USING CALCULATORS AND COMPUTER ALGEBRA SYSTEMS A1
B TRIGONOMETRY REVIEW A13
C SOLVING POLYNOMIAL EQUATIONS A27
D SELECTED PROOFS A34
ANSWERS TO ODD-NUMBERED EXERCISES A45
INDEX I-1
WEB APPENDICES (online only)
Available for download at www.wiley.com/go/global/anton and in WileyPLUS.
E REAL NUMBERS, INTERVALS, AND INEQUALITIES
F ABSOLUTE VALUE
G COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS
H DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS
I EARLY PARAMETRIC EQUATIONS OPTION
J MATHEMATICAL MODELS
K THE DISCRIMINANT
L SECOND-ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS
WEB PROJECTS: Expanding the Calculus Horizon (online only)
Available for download at www.wiley.com/go/global/anton and in WileyPLUS.
BLAMMO THE HUMAN CANNONBALL
COMET COLLISION
HURRICANE MODELING
ITERATION AND DYNAMICAL SYSTEMS
RAILROAD DESIGN
ROBOTICS
商品描述(中文翻譯)
內容簡介:
微積分,早期超越,第10版繼續發展以滿足不斷變化的市場需求,提供各種教學和學習需求的靈活解決方案。微積分,早期超越,第10版在增加學生對數學的理解和概念理解方面表現出色。新版保留了早期版本的優勢,例如Anton的清晰表達、優秀的數學、出色的練習和示例,以及適當的難度水平,同時在WileyPLUS中增加了更多的技能和練習問題。
Howard Anton的微積分:早期超越,第10版與WileyPLUS無縫集成,WileyPLUS是一個基於研究的在線環境,用於有效的教學和學習,繼續Anton在建立學生對數學的信心方面的願景,因為它消除了學習的猜測工作,為他們提供了一個清晰的路線圖:該做什麼,如何做,以及他們是否做對了。
章節目錄:
0 微積分之前 1
0.1 函數 1
0.2 從舊函數中獲得新函數 15
0.3 函數族 27
0.4 反函數;反三角函數 38
0.5 指數和對數函數 52
1 極限和連續性 67
1.1 極限(直觀方法) 67
1.2 計算極限 80
1.3 極限趨於無窮;函數的端點行為 89
1.4 極限(更嚴謹地討論) 100
1.5 連續性 110
1.6 三角、指數和反函數的連續性 121
2 導數 131
2.1 切線和變化率 131
2.2 導數函數 143
2.3 微分法技巧入門 155
2.4 乘積和商的法則 163
2.5 三角函數的導數 169
2.6 鏈式法則 174
3 導數的其他主題 185
3.1 隱式微分 185
3.2 對數函數的導數 192
3.3 指數和反三角函數的導數 197
3.4 相關變化率 204
3.5 局部線性近似;微分 212
3.6 L'Hopital法則;不確定型式 219
4 圖形和應用中的導數 232
4.1 函數分析I:增加、減少和凹凸性 232
4.2 函數分析II:相對極值;多項式圖形 244
4.3 函數分析III:有理函數、尖點和垂直切線 254
4.4 絕對極大值和極小值 266
4.5 應用的最大值和最小值問題 274
4.6 直線運動 288
4.7 牛頓法 296
4.8 羅爾定理;平均值定理 302
5 積分 316