Singularly Perturbed Methods for Nonlinear Elliptic Problems
暫譯: 非線性橢圓問題的單一擾動方法

Cao, Daomin, Peng, Shuangjie, Yan, Shusen

  • 出版商: Cambridge
  • 出版日期: 2021-03-25
  • 售價: $3,080
  • 貴賓價: 9.5$2,926
  • 語言: 英文
  • 頁數: 262
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1108836836
  • ISBN-13: 9781108836838
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This introduction to the singularly perturbed methods in the nonlinear elliptic partial differential equations emphasises the existence and local uniqueness of solutions exhibiting concentration property. The authors avoid using sophisticated estimates and explain the main techniques by thoroughly investigating two relatively simple but typical non-compact elliptic problems. Each chapter then progresses to other related problems to help the reader learn more about the general theories developed from singularly perturbed methods. Designed for PhD students and junior mathematicians intending to do their research in the area of elliptic differential equations, the text covers three main topics. The first is the compactness of the minimization sequences, or the Palais-Smale sequences, or a sequence of approximate solutions; the second is the construction of peak or bubbling solutions by using the Lyapunov-Schmidt reduction method; and the third is the local uniqueness of these solutions.

商品描述(中文翻譯)

這本關於非線性橢圓偏微分方程中奇異擾動方法的介紹,強調了具有集中性質的解的存在性和局部唯一性。作者避免使用複雜的估計,並通過徹底研究兩個相對簡單但典型的非緊湊橢圓問題來解釋主要技術。每一章接著進一步探討其他相關問題,以幫助讀者更深入了解從奇異擾動方法發展出來的一般理論。本書旨在為計劃在橢圓偏微分方程領域進行研究的博士生和初級數學家提供指導,內容涵蓋三個主要主題。第一個是最小化序列的緊性,或稱為Palais-Smale序列,或一系列近似解;第二個是利用Lyapunov-Schmidt約簡法構造峰值或氣泡解;第三個是這些解的局部唯一性。