Blow-up Theory for Elliptic PDEs in Riemannian Geometry
暫譯: 黎曼幾何中橢圓偏微分方程的爆炸理論
Olivier Druet, Emmanuel Hebey, Frédéric Robert
- 出版商: Princeton University
- 出版日期: 2004-05-09
- 售價: $1,490
- 貴賓價: 9.8 折 $1,460
- 語言: 英文
- 頁數: 224
- 裝訂: Paperback
- ISBN: 0691119538
- ISBN-13: 9780691119533
下單後立即進貨 (約5~7天)
相關主題
商品描述
Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrödinger operators on the left hand side and a critical nonlinearity on the right hand side.
A significant development in the study of such equations occurred in the 1980s. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev space consisting of square integrable functions whose gradient is also square integrable. This splitting is known as the integral theory for blow-up. In this book, the authors develop the pointwise theory for blow-up. They introduce new ideas and methods that lead to sharp pointwise estimates. These estimates have important applications when dealing with sharp constant problems (a case where the energy is minimal) and compactness results (a case where the energy is arbitrarily large). The authors carefully and thoroughly describe pointwise behavior when the energy is arbitrary.
Intended to be as self-contained as possible, this accessible book will interest graduate students and researchers in a range of mathematical fields.
商品描述(中文翻譯)
橢圓方程的臨界索博列夫增長已經成為數十年來研究的重點,因為它們在分析、幾何和物理學中被證明具有重要意義。本書研究的方程屬於著名的Yamabe類型。它們在左側涉及施羅丁格算子,而在右側則涉及臨界非線性。
在1980年代,對這類方程的研究出現了一個重要的進展。研究發現,序列分裂為極限方程的一個解——有限個泡沫的和——以及一個在Sobolev空間中強收斂到零的餘項,該空間由平方可積函數及其梯度也為平方可積的函數組成。這種分裂被稱為爆炸的積分理論。在本書中,作者發展了爆炸的點狀理論。他們引入了新的思想和方法,導致了尖銳的點狀估計。這些估計在處理尖銳常數問題(能量最小的情況)和緊性結果(能量任意大的情況)時具有重要應用。作者仔細而徹底地描述了當能量任意時的點狀行為。
本書旨在盡可能自足,將吸引各個數學領域的研究生和研究人員。