The Art of Feature Engineering: Essentials for Machine Learning
暫譯: 特徵工程的藝術:機器學習的基本要素

Duboue, Pablo

買這商品的人也買了...

相關主題

商品描述

When machine learning engineers work with data sets, they may find the results aren't as good as they need. Instead of improving the model or collecting more data, they can use the feature engineering process to help improve results by modifying the data's features to better capture the nature of the problem. This practical guide to feature engineering is an essential addition to any data scientist's or machine learning engineer's toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series, and images, with fully worked out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction, and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.

商品描述(中文翻譯)

當機器學習工程師處理數據集時,他們可能會發現結果並不如預期。與其改善模型或收集更多數據,他們可以使用特徵工程過程來幫助改善結果,通過修改數據的特徵來更好地捕捉問題的本質。這本關於特徵工程的實用指南是任何數據科學家或機器學習工程師工具箱中不可或缺的補充,提供了改善機器學習解決方案性能的新思路。文本從基本概念和技術開始,逐步建立到一種獨特的跨領域方法,涵蓋圖形、文本、時間序列和圖像數據,並附有完整的案例研究。主要主題包括分箱、外部折估計、特徵選擇、降維和編碼變長數據。案例研究的完整源代碼可在伴隨網站上以 Python Jupyter notebooks 的形式獲得。